
Learning Informative and Private Representations
via Generative Adversarial Networks

Tsung-Yen Yang
Princeton University

ty3@princeton.edu

Christopher Brinton
Princeton University

cbrinton@princeton.edu

Prateek Mittal
Princeton University
pmittal@princeton.edu

Mung Chiang
Purdue University
chiang@purdue.edu

Andrew Lan
Princeton University

andrew.lan@princeton.edu

Abstract—It is of crucial importance to simultaneously protect
against sensitive attributes in data while building predictive
models. In this paper, we tackle the problem of learning
representations from raw data that are i) informative and
predictive of desirable variables, and ii) private and protect
against adversaries that attempt to recover sensitive variables.
We cast this problem under the generative adversarial network
(GAN) framework and design three components: an encoder,
an ally that predicts the desired variables, and an adversary
that predicts the sensitive ones. As a use case, we apply our
approach to learn representations of raw student clickstream
event data captured as they watch lecture videos in massive open
online courses (MOOCs). Through experiments on a real- world
dataset collected from a MOOC, we demonstrate that our method
can learn a low-dimensional representation of each user that i)
excels at classifying whether a user will answer a quiz question
correctly, and ii) prevents an adversary from recovering each
user’s identity. Our results indicate that our approach is effective
in learning representations that are both informative and private.

Index Terms—Generative adversarial networks, Massive open
online courses, Predictive models, Privacy

I. INTRODUCTION

Predictive modeling has become a key application of ma-
chine learning, finding success in applications including com-
puter vision [1], computational social science [2], biomedical
sciences [3], and education research [4]. In the majority of
these applications, the prediction task is to use data collected
about users to forecast certain events or outcomes, e.g., the
next product a customer will buy, the risk level of a patient
to a certain type of cancer, the grades of a student, and so
forth. As predictive modeling becomes more ubiquitous, then,
it is important to develop methods that can protect sensitive
attributes in user data, especially in applications like clinical
diagnosis and educational research where patient and student
data are highly sensitive [5].

Advances in predictive modeling rely heavily on open-
access datasets, the most famous perhaps being the Netflix
Prize dataset [6] from which researchers have built recom-
mendation systems for movie preferences. It has been shown,
however, that despite actions taken to preserve anonymity,
user identities in these datasets can still be reverse-engineered,
potentially by analyzing related datasets for which identities
have not been obfuscated. The seminal work [7], for example,
developed a novel de-anonymization algorithm to unveil user
information that had been anonymized in public micro-data,

e.g., the Netflix Prize dataset and clinical datasets. The work
in [8] also demonstrated that one can identify anonymous
users in online social networks with up to 90% accuracy
using topological features of other social network graphs,
e.g., Twitter. Equipped even with sparse, auxiliary information,
these works demonstrate that it is possible for an attacker to
uncover sensitive attributes from user data.

Several efforts have been made in machine learning to
develop algorithms that achieve reasonable predictive power
while preserving user privacy. The most popular line of work,
differential privacy (DP) [9], proposes to add random noise to
raw data, with the noise level controlling the tradeoff between
predictive quality and user privacy. The Laplace mechanism
[10], which perturbs raw data with random Laplace noise, is
the most widely used due to its simplicity and well-defined
mathematical properties. But while the Laplace mechanism
is effective in preserving user privacy, it has been empiri-
cally shown to both significantly reduce the utility of data
for predictive modeling [11]–[16] and dramatically increase
sample complexity for training models [17]–[19]. As a result,
we consider whether a method for encoding the data can
be designed to preserve privacy without damaging predictive
power.

Important use cases of privacy-preserving predictive mod-
eling occur in educational applications. This is especially the
case in online learning settings, e.g., massive open online
courses (MOOCs), where a plethora of measurements are
captured on students as they interact with course content
and on discussion forums [20].1 In recent years, MOOCs
have enjoyed wide success in providing high-quality, easily
accessible learning content to tens of millions of students
around the globe [21]–[27]. Several popular MOOCs have
seen tens of thousands of students enrolled in single sessions,
showing promise of scaling up learning at reasonable costs.
Predictive modeling is important in MOOCs since i) it can
help students monitor their learning progress [20], [28]–[31],
and ii) it can help instructors identify which students are at
risk of early dropout and act accordingly to retain them [32],
[33]. The behavior and performance data needed to make
these predictions, however, is sensitive, with many students
preferring to remain anonymous to their peers. For MOOC
service providers, then, both predictive modeling and privacy

1See, e.g., coursera.org, edx.org.

preservation are crucial [5], [34].

A. Contributions

In this paper, we propose a novel methodology (Section
II) for learning representations from raw user data that i)
enables predictive modeling on desirable attributes while ii)
preventing adversaries from recovering sensitive attributes.
Casting the problem under the generative adversarial network
(GAN) framework, we develop three model components: i)
an encoder network that takes raw user data as input and
generates learned representations as output, ii) an ally network
that takes learned representations as input and predicts desired
variables as output, and iii) an adversary network that takes
representations as input and predicts sensitive variables as
output. The encoder accommodates both static and time-
varying data attributes.

We frame a popular MOOC predictive modeling use case
in terms of our method (Section III). In this scenario, the
users are students, the raw student data corresponds to their
clickstream events generated as they watch lecture videos,
the desired variables correspond to whether they are correct
on first attempt (CFA) in answering quiz questions, and the
sensitive attribute correspond to their identities. We explore
two different settings for the generator network: first, we
define a series of static, hand-crafted features summarizing
the clickstreams as raw user data and use a corresponding
fully-connected neural network as the encoder; second, we
input the time-varying clickstream events directly and use a
corresponding long short-term memory (LSTM) network as
the encoder.

In evaluating our methodology (Section IV) on a MOOC
dataset consisting of roughly 315,000 clickstream events gen-
erated from 4,000 students, we find that it can learn represen-
tations of raw user data that outperform hand-crafted features
by 20% in terms of CFA prediction, while simultaneously re-
ducing the possibility for adversaries to recover user identities
by 30%. Furthermore, it outperforms the Laplace mechanism
by 20% in terms of CFA prediction at the same privacy level.
These results imply that our approach can be used to learn
informative and private representations of raw user data that
enable effective and safe predictive modeling.

Overall, our method separates itself from DP in two aspects.
First, it is data-dependent, i.e., it learns representations from
user data that exhibit greater predictive power and better
privacy. Second, it directly uses raw user data without relying
on feature engineering; this can be a bottleneck for DP with
certain data types, e.g., data streams.

B. Related Work

A few previous works [35]–[37] have leveraged adversarial
training to learn representations that prevent an adversary
from uncovering sensitive information. However, these works
mainly focus on obfuscating a single specific characteristic of
an image, such as preventing a classifier from identifying a
specific scene [35], removing QR code added in the original
image [36], and blurring artificially superimposed text added

in facial pictures [37]. Our method, by contrast, can safeguard
sensitive information when data are used for storage or trans-
mission.

Our work is most closely related to the work in [38], which
also uses a GAN formulation to learn private representations
from a published dataset. However, it formulates a minimax-
constrained optimization problem by considering two model
parts: a privatizer, which outputs private representations by
injecting noise based on some constraints, and an adver-
sary, which learns sensitive attributes from representations. In
contrast, our framework learns representations automatically
without adding noise and constraints. Moreover, we test our
framework on a real-world dataset to demonstrate the feasi-
bility of our model, which is not done in [38].

II. LEARNING REPRESENTATION METHODOLOGY

In this section, we develop our method for learning rep-
resentations of raw data that prevent adversaries from de-
anonymizing sensitive attributes while preserving the predic-
tive quality of desirable attributes. Specifically, we exploit the
framework of generative adversarial networks (GAN), with
our method being comprised of three modules: i) an encoder
network (Section II-B) that outputs learned representations
based on input of raw user data, ii) an ally network (Sec-
tion II-C) that preserves the predictive quality of desirable
attributes in the learned representations, and iii) an adversary
network (Section II-D) that recovers information of sensitive
attributes in the learned representations. Figure 1 summarizes
the interconnection of these modules: the objective is for the
encoder network to generate representations that minimize the
loss function of the ally network while maximizing the the
loss function of adversary network.

One advantage of our method is that it is reasonably model-
agnostic: each module can instantiate specific differential func-
tions (e.g., neural networks) based on the needs of the particu-
lar application. Consider an application in speech recognition,
for example, where the objective is to predict the words a user
stated from the captured audio signal without leaking sensitive
personal information. The ally and adversary networks may
use recurrent neural networks (RNN) for this, given their
demonstrated superior quality in this application. As another
example, researchers in healthcare interested in finding the
connection between medical images and cancer without leak-
ing sensitive patient information may employ convolutional
neural networks, given their demonstrated superior quality in
this application. In this paper, we express the modules in terms
of neural networks due to their expressiveness and flexibility.

A. User-Item Data Pairs

Let the dataset of interest consist of U users and V items,
with user u’s interaction with item v forming the user-item
pair (u, v) that possesses

1) a raw data attribute vector fu,v of dimension K, i.e.,
with K attributes,

2) a binary classification label yu,v ∈ {0, 1}, which we aim
to predict, and

Dataset

Encoder
Network

Ally
Network

Adversary
Network

fu,v hu,v

Lenc = ↵Lall � (1 � ↵)Ladvminimize Lallminimize

Ladvminimize

Fig. 1: The methodology we develop in this paper. An encoder network that takes raw data fu,v as input and generates
representations hu,v to minimize Lenc, an ally network that takes hu,v as input and predicts desirable attributes, and an
adversary network that takes hu,v as input and predicts sensitive attributes.

3) a sensitive label su,v ∈ {1, 2, ..., S}, which we aim to
obfuscate.

While the exact K attributes will be specific to the application,
we distinguish between those that are time-varying and those
that are static. When the attributes are time-varying, they will
be denoted fu,v(i), where i ∈ {1, ..., Lu,v} is the (discrete)
time index and Lu,v is the length of the time series sequence
for (u, v). In Section III, we will specify the determination of
both static fu,v and time-varying fu,v(i) for our application
to online education, where items are lecture videos.

B. Encoder Network

We consider a different structure of the encoder network
depending on whether the attributes are static or time varying:
(i) a fully-connected neural network is used when the inputs
are fu,v , and (ii) a long short-term memory (LSTM) network
is used when the inputs are fu,v(i). The objective in each case
is for the encoder to generate a learning representation hu,v for
each user-item pair from the input, raw data attributes, treating
the dimension N of the representation as a model parameter.

1) Static attributes fu,v: In the case of static attributes, the
encoder for each (u, v) is a fully connected network:

h0 =σ(W T
0 fu,v + b0)

h1 =σ(W T
1 h0 + b1)

... (1)

hu,v = hL =σ(W T
LhL−1 + bL).

Here, L denotes the number of layers, the matrix W l and bias
vector bl are the parameters of the lth layer, and σ(·) can be
chosen as any commonly-used nonlinearity. W l and bl are the
same for all (u, v) pairs.

2) Time-varying attributes fu,v(i): LSTMs are known for
their ability to capture dependencies over long time periods
[39], e.g., from time series data, motivating their use for time-
varying input attributes. Specifically, our forget gate g, input
gate i, and output gate o vectors are defined at each time step
i as

gu,v(i) = σ(W ggu,v(i) + Ufhu,v(i− 1) + bg),

iu,v(i) = σ(W ifu,v(i) + U ihu,v(i− 1) + bi), (2)

ou,v(i) = ϕ(W ofu,v(i) + Uo(iu,v(i)� hu,v(i− 1)) + bo).

Here, ϕ(·) and σ(·) are the tanh and sigmoid functions,
respectively. � denotes element-wise vector and matrix mul-
tiplication. The matrices W g , Uf , W i, U i, W o, and Uo as
well as the vectors bg, bi, and bo are model parameters. With
this, h is updated in each time step as

hu,v(i) = gu,v(i)�hu,v(i− 1) + (1−gu,v(i− 1))�ou,v(i).
(3)

The forget vector g thus controls the degree to which the prior
state h(i− 1) and attributes f(0), ...,f(i− 1) will be used in
the new state h(i), while the input gate i and output gate o
together specify the degree to which the current input values
fu,v(i) will propagate to the update of the new state. The
final state hu,v(Lu,v) at the last time index Lu,v is taken as
the learning representation for (u, v).

Encoding all the information in a long sequence into a
single final state hu,v(Lu,v), however, might be unrealistic. To
investigate this, we exploit the idea of an attention mechanism
introduced by [40]. Instead of forcing the network to encode
all the information into the final state, an attention module
takes all the hu,v(i) as inputs and generates the learned
representation hu,v as outputs. As result, the model is capable
of attending to different parts of the sequence. Formally, an
attention module is defined as

eu,v(i) = au,v(i)
Tϕ(W ahu,v(i))

γu,v(i) =
exp(eu,v(i))∑
j exp(eu,v(j))

(4)

hu,v =
∑
i

γu,v(i)hu,v(i)

where
∑
i γu,v(i) = 1 is the weight of hu,v(i). We will

compare the performance of these two methods for generating
representations from time-varying attributes in Section IV.
Loss function. For model parameter training, we define the
loss function of the encoder (Lenc) in terms of the losses of
the ally (Lall) and adversary (Ladv) networks as

Lenc = αLall − (1− α)Ladv, (5)

where α ∈ [0, 1] is a tradeoff parameter controlling the weight
of the ally versus the adversary. An objective of minimizing
Lenc will thus guide the encoder to minimize Lall of the ally
while maximizing Ladv of the adversary. Lall and Ladv will be
specified in Sections II-C and II-D.

C. Ally Network

The ally network functions as a predictor with mapping
F : hu,v → yu,v , i.e., predicting the class yu,v of (u, v) based
on the learned representation hu,v . With a fully-connected L-
layer neural network, the ally is specified as

z0 =σ(W T
0 hu,v + b0)

z1 =σ(W T
1 z0 + b1)

... (6)

y′u,v =σ(wT
LzL−1 + bL)

where y′u,v ∈ [0, 1] is the probability prediction of yu,v .
The matrices W 0, ...,WL−1, vectors wL, z0, ...,zL−1 and
scalar bL are model parameters. From this, we define the loss
function of the ally network over any given set Ω of (u, v)
pairs in the training set as

Lall = −
∑

(u,v)∈Ω

(
yu,v ln(σ(y′u,v)) + (1− yu,v) ln(1− σ(y′u,v))

)
,

(7)

i.e., the sigmoid cross entropy between the predictions and
targets over Ω. The choice of Ω will be discussed with model
training in Section IV-A.

D. Adversary Network

The adversary network also functions as a predictor, at-
tempting to predict the sensitive information of the (u, v) pair
from the learned representation hu,v , i.e., F : hu,v → su,v .
Similar to the ally, we design the adversary as a fully con-
nected network:

z0 =σ(W T
0 hu,v + b0)

z1 =σ(W T
1 z0 + b1)

... (8)

s′u,v =softmax(W T
LzL−1 + bL)

where s′u,v ∈ [0, 1]S is the vector of predicted probabilities for
su,v , i.e., the jth element s′u,v,j is the predicted probability that
su,v = j, with 1Ts′u,v = 1. softmax(·) denotes the softmax
function [41]. The loss function is then the sigmoid cross
entropy over the classes:

Ladv = −
∑

(u,v)∈Ω

∑
j

su,v,j ln(σ(s′u,v,j)), (9)

where we have slightly abused notation in using su,v = [su,v,j]
as a one-hot encoding of su,v , i.e., su,v,j = 1 when su,v = j.

E. Training Algorithm

Formally, training starts with using a batch of training
examples to minimize the encoder network loss function Lenc,
which is the linear combination of ally network loss function
Lall and adversary network loss function Ladv. After training an
encoder network with the standard neural network backprop-
agation algorithm for several iterations, we fix representations
generated by an encoder network and use them to minimize

Algorithm 1 GAN parameter tuning and learning representa-
tion algorithm.

Initialize the parameters of a encoder θenc, ally θall and
adversary θadv network.
for each epoch do

Sample a batch of training examples,
{(fui,vi , hui,vi , yui,vi , ui)}ni=1.
for epoch t do

for (fui,vi , hui,vi) in the batch do
Update θenc according to ∇θencLenc
using optimization algorithms.

Obtain representations hui,vi by θenc to form
a batch of training examples, {(hui,vi , yui,vi , ui)}ni=1.
for epoch t do

for (hui,vi , yui,vi , ui) in the batch do
Update θall according to ∇θallLall with an
input hui,vi and a target yui,vi using
optimization algorithms.
Update θadv according to ∇θadvLadv with
an input hui,vi and a target ui using
optimization algorithms.

return Optimal θ∗enc.

Lall and Ladv. The structure of the loss function depends on
the prediction tasks. For this paper, the loss functions Lall and
Ladv are defined as sigmoid cross entropy.

Algorithm 1 shows the full learning framework we develop
in the paper. We utilize the inner loop to train the encoder,
ally, and adversary networks. During the inner loop of the
encoder network, we apply minibatch updates, to the network.
After performing this step, the ally and adversary networks
update their parameters according to representations encoded
by an encoder network. This technique allows the network to
stabilize during updating the parameters [42].

III. DATASET FROM ONLINE EDUCATION

We now formulate our online education scenario in the
context of the data framework from Section II. In doing so,
we introduce the dataset that will be used for evaluation in
Section IV.

A. MOOC Scenario and Data

Massive open online courses (MOOCs) typically contain
sequences of lecture videos interspersed with in-video quizzes.
A problem that has received recent research attention is how
to use data captured on students as they watch these videos
to predict their performance on the corresponding quizzes, to
e.g., generate analytics for instructors on struggling students or
confusing content [20], [31], [43]. Educational data, however,
is considered to be rather sensitive: many students in online
courses choose to be completely anonymous to their peers. It is
therefore important that, while maximizing prediction quality,
care be taken to obfuscate user identities in MOOC data.

Denote the sequence of questions in a MOOC as q1, q2,
We enforce a 1:1 correspondence between video content and

quizzes by considering all video content appearing between
qn−1 and qn as the (single) video vn for question qn. Two
types of data can be collected about a student on vn and qn:

1) Video-watching clickstreams: While a student watches a
video on a MOOC, actions available in the scrub bar include
pausing, playing, changing the playback speed, and skipping
to another place in the video. The resulting video-watching
behavior is typically recorded as a sequence of clickstream
events. Each clickstream event Ei contains the ID of the user
u(Ei), the identifier of the video v(Ei), the type of action
e(Ei), the current position p(Ei) of the video player, the
position of the video player p′(Ei) immediately before the
action, the UNIX timestamp (in seconds) of occurrence x(Ei),
the binary state s(Ei) – either playing or paused – of the video
player, and the playback rate r(Ei). In Section III-B we will
explain how the Ei define attributes fu,v in our model.

2) Question submissions: When a student submits an an-
swer to an in-video question, the following is recorded as
an event Aj : the user ID u(Aj), video ID v(Aj), answer
submitted a(Aj), timestamp x(Aj), points rewarded o(Aj),
and maximum possible points omax(Aj). Measures of perfor-
mance on quiz questions typically consider the student’s first
attempt on the question only [20], [43].

B. User-Video Data Pairs

The prediction objective is to define a mapping from student
u’s interaction on video vn to their performance on question
qn. The privacy objective, on the other hand, is to prevent
the ability of tying a student’s interaction to their identity u.
Taking items to be videos, then, we specify the three items
for each user-video pair from Section II-A as follows:

1) Attribute vectors: We define two attribute vectors, one
time-varying and one static.
Time-varying fu,v(i). We are interested in all events
prior to the first time student u answered the question
for video v. This is the sequence of events eu,v =
[Ei|u(Ei) = u, v(Ei) = v, x(Ei) < Xu,v], where
Xu,v = min{x(Aj)|u(Aj) = u, v(Aj) = v} is the times-
tamp of the first submission. The time-varying attributes
fu,v(i) are vectors of the sequence of event parameters:
fu,v(i) = [e(Ei), p(Ei), p

′(Ei), x(Ei), s(Ei), r(Ei)], where
Ei = eu,v(i) is the ith event made by student u on video v,
and the space of four actions e(Ei) ∈ {0, 1, ..., 3} and two
states s(Ei) ∈ {0, 1} are mapped to integer sets.
Static fu,v . We also use the sequence eu,v to define a set of
nine quantities summarizing student u’s behavior on video v.
Following the method outlined in [43], they are as follows,
with the range in each case indicated in parentheses:
(i) Fraction completed (0 − 1): The percentage of the video
that the student played, not counting repeated intervals more
than once.
(ii) Fraction of time spent (≥ 0): The amount of (real) time the
student spent on the video, while playing or paused, divided
by the total playback time of the video.2

2The playback time of a video is the time it takes to play through it at the
default speed, e.g., a 3:30 video has a playback time of 210 seconds.

(iii) Fraction of time played (≥ 0): The amount of the video
that the student played, including repetitions, divided by its
total playback time.
(iv) Fraction of time paused (≥ 0): The amount of time the
student spent paused on the video, divided by its total playback
time.
(v) Number of pauses (integer ≥ 0): The number of times the
user paused the video.
(vi) Number of skips backward (integer ≥ 0): The number of
times the user skipped backward in the video.
(vii) Number of skips forward (integer ≥ 0): The number of
times the user skipped forward in the video.
(viii) Average playback rate (0.5− 2.0): The time-average of
the playback rates selected by the user while in the playing
state.3

(ix) Standard deviation of playback rate (0 − 0.75): The
standard deviation of the playback rates selected over time.

The static fu,v is then a vector of these nine quantities.
In the evaluation Section IV, we will compare the resulting
model quality between these two types of attributes.

2) Classification labels: We quantify a student’s perfor-
mance on a question as whether the student was correct on
their first attempt (CFA) at answering it or not (non-CFA)
[20], [43]. Formally, yu,v = 1 if o(Au,v) = omax(Au,v) and
yu,v = 0 otherwise, where Au,v is student u’s first submission
on the question for video v, i.e., at timestamp Xu,v .

3) Sensitive labels: As stated, the privacy objective is to
obfuscate student identities. Therefore, we set su,v = u.

C. Dataset and Groupings

The dataset used in this paper is from the fall 2012 offering
of the course Networks: Friends, Money, and Bytes on the
Coursera MOOC platform. This course has 92 in-video quiz
questions among 20 lectures, with each lecture containing 4-5
videos. A total of 314,632 clickstream events were generated
from 3,976 unique students that answered at least one question.

MOOCs are notorious for low completion rates, with many
students viewing only a small portion of lectures. On average,
each student watched roughly 7 of the 92 videos in this course
(standard deviation = 12.5), with 75% answering less than 8
questions. When dividing our dataset into different groups of
student-video pairs for training and evaluation, then, we need
to ensure that sufficient samples are available for each student.
We define different partitions of students depending on the
attribute type:
Static attributes. For static fu,v , let Ua0S = {u : Nu ≥ a0}
be the set of students u who answered at least a0 questions,
and let Ωa0S = {(u, v) : u ∈ Ua0S } be the corresponding set
of student-video pairs. We consider Ω2

S , the subset of 2,835
students that have at least 2 (u, v) pairs, and Ω45

S , the 104
students with at least 45 pairs, to assess the impact of student
activity level on model quality.
Time-varying attributes. For time-varying fu,v(i), the in-
dividual clickstream events are samples. Letting Ωa0,c0,c1T =

3The video player in our dataset allowed rates between 0.75x and 2.0x the
default speed.

0 500 1000 1500 2000 2500
K

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

of
 th

e
fir

st
 K

Original Features, AUC=0.6195
Our Features, AUC=0.6290
Random, AUC=0.5000
DP Features, AUC=0.5009

Fig. 2: Results of Top K Ranks of de-anonymization attack in Ω2
S . The y-axis is the probability that the correct class is among

the top K ranks, for each K (x-axis). We find that our representations (GAN features) outperform the original features in
terms of CFA grades prediction and privacy. While the method of adding noise to features has better privacy, it suffers from
low predictive quality.

{(u, v) : Nu ≥ a0, c0 < Lu,v < c1} be the set of student-
video pairs for which student u has at least a0 questions
answered and the length of the time series Lu,v for user u
on video v (i.e., the number of clickstream events in eu,v) is
between c0 and c1, we set a range on the number of samples
for each (u, v) pair. We consider Ω45,7,9

T and Ω45,3,15
T in our

evaluation, to analyze the effect of larger variance in time
series length on model quality; these sets correspond to 941
and 4,962 student-video pairs, respectively.

IV. MODEL EVALUATION

We now evaluate the methodology proposed in Section II
using the dataset described in Section III. After presenting
our evaluation procedure (Section IV-A), we consider the
following specific questions: (i) Can representations generated
by our method outperform a baseline of adding noise in terms
of predictive quality and privacy (Section IV-B)? (ii) How do
the parameters α, of the encoder network loss function, and
N , the dimension of the learned representation, impact per-
formance (Section IV-C)? (iii) Does learning representations
directly from the clickstream events provide enhancements
in quality over the static quantities (Section IV-D)? We then
consider analytics provided by our model on the contribution
of individual clickstreams (Section IV-E).

A. Model Evaluation Setup

To evaluate our methodology, we use the following train-
ing/testing procedure, metrics, and baseline.
Training and testing. Following Section III, we randomly
select 80% of the user-video pairs from Ωa0S and Ωa0,c0,c1T

as the training set, respectively, and use the other 20% of
these sets as the test set. To ensure that an adversary can
have information of each individual user u to perform de-
anonymization attacks, we ensure that both the training and
test sets to contain user-video pairs of each student. Based on

this setting, a student must answer at least two questions so
that an adversary can use data in the training set to recover
their identity in the test set. We perform 5-fold cross validation
on each grouping of the dataset introduced in Section III-C,
i.e., Ω2

S , Ω45
S , Ω45,7,9

T , and Ω45,3,15
T . Ω45,7,9

T has more consistent
length than Ω45,3,15

T , which helps us to examine how the model
performs under different event lengths.

On each fold, we train our model on the training set
and then generate representations hu,v for samples from
both the training and test sets. After obtaining the hu,v ,
we train another classifier on the training set using standard
classification algorithms such as multi-layer perceptron to
predict CFA grades yu,v and user identity on the test set. For
an encoder network that learns from static attributes fu,v ,
we sweep the size of representations as N ∈ {2, 4, 9, 15}
since we have a total of 9 clickstream quantities, as defined
in Section III-B. We also sweep the tradeoff parameter as
α ∈ {0.00, 0.25, 0.50, 0.75, 1.00} to see how the performance
fluctuates. After parameter tuning, we set all three parts of
our framework be fully-connected neural networks with two
hidden layers, with sizes [20, 10] in the encoder network,
[20, 10] in the ally network, and [100, 50] in the adversary
network.
Metrics. To measure the predictive quality of the learned
representations, we use two metrics. First, to measure the
performance of CFA prediction on a set Ω, we compute the
overall accuracy (ACC), or the fraction of correct predictions:

1

|Ω|
∑

(u,v)∈Ω

1{yu,v = ŷu,v}

where ŷu,v ∈ {0, 1} is the binary prediction made based on
the predicted y′u,v and 1 is the indicator function. Second,
we compute the area under the ROC curve (AUC), which
assesses the tradeoff between true and false positive rates for a

0.02 0.04 0.06 0.08 0.10 0.12
MAP@5

0.50

0.55

0.60

0.65

0.70

CF
A

pr
ed

ict
io

n
AU

C

0.0
0.01

0.25

0.5

0.75
0.99 1.0

1e7
1e6

1e5

1e4

1e3
Our Features
DP Features

(a) Size = 2

0.02 0.04 0.06 0.08 0.10 0.12
MAP@5

0.50

0.55

0.60

0.65

0.70

CF
A

pr
ed

ict
io

n
AU

C

0.0
0.01
0.25

0.5

0.75
0.99

1.0
1e7

1e6

1e5

1e4

1e3
Our Features
DP Features

(b) Size = 4

0.02 0.04 0.06 0.08 0.10 0.12
MAP@5

0.50

0.55

0.60

0.65

0.70

CF
A

pr
ed

ict
io

n
AU

C

0.00.01
0.25

0.5

0.75

0.99
1.0 1e7

1e6

1e5

1e4

1e3
Our Features
DP Features

(c) Size = 9

0.02 0.04 0.06 0.08 0.10 0.12
MAP@5

0.50

0.55

0.60

0.65

0.70

CF
A

pr
ed

ict
io

n
AU

C
0.0

0.01

0.25

0.5 0.75

0.99
1.0 1e7

1e6

1e5

1e4

1e3
Our Features
DP Features

(d) Size = 15

Fig. 3: Plots of MAP@5 and AUC of our framework and the method of Laplace noise in Ω45
S . Each point in the curve of our

features represents different α while points in the curve of DP features represents different ε. Our features generally outperform
DP features in terms of the utility and privacy of the data.

classifier. Random guessing has an AUC of 0.5 while a perfect
model has an AUC of 1.

To measure the performance of privacy preservation, we
use two other metrics: top K Ranks [44] and mean average
precision at K (MAP@K). The first metric, Top K Ranks,
is motivated by the observation that the adversary’s goal
may only be to trim down the list of possible users from
a representation, rather than recovering the exact identity of
a user. As a result, a classifier takes a student-video pair’s
representation as input and generates a sequence of possible
users as output, sorted by descending likelihood. Then, Top
K Ranks simply corresponds to the accuracy of the first K
predictions. The second metric, MAP@K, simply corresponds
to the average precision of the first K predictions. Note that
these two metrics are both in [0, 1].
Baseline. We include one baseline method as the benchmark
for our method. As mentioned in Section I, we use the
popular Laplace mechanism in DP [10], which simply adds
Laplace noise to the data. Concretely, define GS(Ω), the
global sensitivity of Ω, as:

GS(Ω) = max
fui,vi

,fuj,vj
∈Ω
||fui,vi − fuj ,vj ||1.

Then we can generate private representations by

hu,v = fu,v + Lap

(
GS(Ω)

ε

)
1 (10)

where the Laplace distribution Lap(a) has density p(x; a) =
1
2aexp(−xa) and 1 is a vector of all ones. In our experiment,
we choose ε ∈ {1e7, 1e6, 1e5, 1e4, 1e3} since the value of
GS(Ω) was observed on the order of 1e4 in our dataset.
Implementation. All of the simulations are implemented
using TensorFlow,4 an open source package for neural network
training and testing.

B. Overall Predictive Quality and Privacy

Figure 2 shows our most important result, which provides
the full distribution over Top K ranks of Ω2

S . Note the red
dashed line indicates the baseline with random guessing and
thus a straight line from 0 to 1. DP features are generated by
adding Laplace noise with ε = 1e3 to the original behavioral
features. We choose ε = 1e3 here since we observe that it
corresponds to the lowest noise level that removes the utility
of the data, i.e., forcing AUC to approach 0.5.

Overall, the results show that our proposed method outper-
forms representations with Laplace noise by 20% in terms
of CFA grade prediction, and even performs slightly better
than the original features without adding noise. In terms of
removing student identity information, it significantly out-
performs the original features by reducing the probability
of user identity recovery by 40%. Although it seems that

4https://www.tensorflow.org/

0.020 0.025 0.030 0.035 0.040 0.045 0.050
MAP@5

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650

CF
A

pr
ed

ict
io

n
AU

C

0.0

0.5

1

1e7
1e6

1e5

1e4 1e3
Our Features
DP Features

(a) Without attention

0.020 0.025 0.030 0.035 0.040 0.045 0.050
MAP@5

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650

CF
A

pr
ed

ict
io

n
AU

C 0.25
0.5 1e7

1e6

1e5

1e4 1e3
Our Features
DP Features

(b) With attention

Fig. 4: Plots of MAP@5 and AUC of our framework and the method of adding Laplace noise in Ω45,7,9
T with and without

attention module. Each point in the curve of our features represents different α while points in the curve of DP features
represents different ε. Our features generally outperform DP features in terms of the utility and privacy of the data.

representations with adding Laplace noise with ε = 1e3 have
better privacy, the data utility is completely lost, with an AUC
of only 0.5009. Therefore, we conclude that our framework
is capable of removing sensitive information from the data
without sacrificing its predictive power of desirable attributes.

C. Impact of α and N

Varying α and ε. Figure 3 visualizes the impact of the
parameters α from the encoder loss function and ε from
the Laplace method, with different representation sizes N .
As α → 1, we expect an encoder network will generate
representations that are more predictive of CFA grades while
less effective in concealing user identities, which is consistent
with the plot. For the DP baseline, larger ε means adding
smaller amount of Laplace noise and thus leads to better
predictive performance in CFA grades while lower privacy
levels. Comparing these two mechanisms, we observe that our
representations can achieve more than 20% improvement over
DP in CFA prediction at the same privacy level when α is
larger than 0.5. When α is close to 0, these two methods
have similar CFA prediction quality and privacy levels. Our
representations can also improve privacy by at least 30% while
achieving the same CFA prediction performance, with the size
of representations being 9 and α set to 0.5. These results show
that our representations are more informative and private than
those generated by DP, when the value of α is large enough.
Varying N . The choice of the size of representations affects
several aspects of the model, including the level of com-
pression, the amount of utility preserved, the computational
resources required to encode the original features, and the
storage space required for the learned representations. Figure 3
shows the results under different size of representations. The
CFA prediction performance elevates up to 0.7 in terms
of AUC when the size of hidden layer is larger than 9,
for appropriate α values. We also find that the larger sizes
make the learned representations preserve more information
towards both CFA prediction and user identity with the same
α value; this observation confirms the fact that the size of

representations controls the amount of information contained
in the data representation. In practice, then, the dimension can
be tuned to obtain representations that satisfy computational
and storage constraints.

D. Static versus Time-Varying Attributes

In Sections IV-B-IV-D, we analyzed the representations
generated from hand-crafted, static fu,v attributes. In practice,
designing such features can be a difficult and time-consuming
task. Moreover, there is no guarantee that the engineered
features capture all the useful information in the raw data.
We therefore seek to compare model quality between these
two different attributes.

To learn representations directly from the raw clickstream
attributes fu,v(i), we implement the LSTM network men-
tioned in Section II-B, which avoids feature engineering.
Recall that we introduced two embedding methods to generate
representations for each user; in one case, the encoder gener-
ates embeddings solely based on the hidden state correspond-
ing to the last clickstream event, and in the other, an attention
mechanism is introduced. In each case, we also concatenate
the representation with another latent vector corresponding to
each individual video to obtain the final representation used
as inputs to the ally and adversary networks.

Figure 4(a) and Figure 5(a) show the results with different
values of α for the non-attention mechanism and compares
it to the DP baseline which adds Laplace noise to the hand-
crafted clickstream features. We see that the representations
learned from raw clickstreams significantly outperform the
hand-crafted features in terms of the tradeoff between CFA
prediction quality and user privacy.

To assess whether using only the last hidden state in the
LSTM network is appropriate, especially for long clickstream
sequences, we also compare performance to the attention
mechanism. Figure 4(b) and Figure 5(b) show the result of
the performance with an attention network on top of the
LSTM network, in terms of CFA prediction quality and privacy
level. We observe that the attention mechanism is capable of

0.02 0.04 0.06 0.08 0.10 0.12
MAP@5

0.50

0.55

0.60

0.65

0.70

CF
A

pr
ed

ict
io

n
AU

C
0.0

0.5
1.0

1e7

1e6

1e5

1e4
1e3 Our Features

DP Features

(a) Without attention

0.02 0.04 0.06 0.08 0.10 0.12
MAP@5

0.50

0.55

0.60

0.65

0.70

CF
A

pr
ed

ict
io

n
AU

C

0.25 1.0

1e7

1e6

1e5

1e4
1e3 Our Features

DP Features

(b) With attention

Fig. 5: Plots of MAP@5 and AUC of our framework and the method of adding Laplace noise in Ω45,3,15
T with and without

attention module. Each point in the curve of our features represents different α while points in the curve of DP features
represents different ε. Our features generally outperform DP features in terms of the utility and privacy of the data.

0 1 2 3 4 5 6
The Index of Event

0

50

100

150

200

250

300

Us
er

s

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

(a) Size of clickstream events = 7.

0 1 2 3 4 5 6 7 8
The Index of Event

0

20

40

60

80

100

120

140

160

Us
er

s

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

(b) Size of clickstream events = 9.

Fig. 6: Examples found by Ω45,7,9
T . The x-axis and y-axis are the sequence of clickstream events and the samples in the dataset

respectively. Each element shows the weight of the clickstream events.

generating more informative features in some cases, with up to
20% increase in CFA prediction quality on the Ω45,7,9

T dataset
when α = 0.25, and with a 30% increase in privacy level
when achieving the same level of CFA prediction quality at
α = 0.25 of Ω45,7,9

T . On the other hand, we also observe that
on the Ω45,3,15

T dataset, the addition of an attention module
leads to no performance improvement.

E. Dynamics of Learned Representations

The attention module can give insight into which click-
stream events contribute to the model quality the most. In
particular, analyzing the difference between earlier events and
later events in terms of their impact on the final representation
can yield better understandings of student behavior. While
an in-depth analysis is left for future work, in Figure 6
we visualize the weight of each clickstream event for user-
video pairs with a total of 7 and 9 clickstream events. We
observe smaller weights in the first and second events and
larger weights in later events across these two examples.
This phenomenon could be explained by the fact that most
users tend to pause a video and change the play speed at
the beginning of the lecture; these events are common across
users and are not highly correlated with CFA and user identity.

When more events are generated, the attention module focuses
more on later clickstreams; this observation further confirms
that using only the last hidden state as the final representation
lead to quality prediction results.

V. CONCLUSIONS

In this paper, we proposed a framework for learning in-
formative and private representations utilizing generative ad-
versarial networks. Our framework consists of three parts: an
encoder network which generates intermediate representations
from raw user data, an ally network which predicts desirable
attributes based on these representations, and an adversary
network which predicts sensitive attributes based on these
representations. Through evaluation on a real-world MOOC
dataset, we have shown that our method achieves superior
quality in predicting user grades from raw user clickstream
events data while further reducing the de-anonymization threat,
compared to differential privacy. Through our use of an
attention module in the encoder network, we found that later
clickstream events contribute more to a user’s representation
than earlier events.

Avenues of future work include i) apply our method to
other applications containing sensitive data attributes, e.g.,

medical data, speech data, and network traffic data, ii) compare
the learned representations with and without the adversary
network in order to understand the key towards anonymity,
and iii) experiment with cases where there are multiple desired
attributes and multiple sensitive attributes.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, Dec. 2012, pp. 1097–1105.

[2] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for
social networks,” Journal of the Association for Information Science
and Technology, vol. 58, no. 7, pp. 1019–1031, Mar. 2007.

[3] M. Shipp, K. Ross, P. Tamayo, A. Weng, J. Kutok, R. Aguiar,
M. Gaasenbeek, M. Angelo, M. Reich, G. Pinkus et al., “Diffuse large
B-cell lymphoma outcome prediction by gene-expression profiling and
supervised machine learning,” Nature Medicine, vol. 8, no. 1, p. 68, Jan.
2002.

[4] N. Schmitt, J. Keeney, F. Oswald, T. Pleskac, A. Billington, R. Sinha,
and M. Zorzie, “Prediction of 4-year college student performance using
cognitive and noncognitive predictors and the impact on demographic
status of admitted students.” Journal of Applied Psychology, vol. 94,
no. 6, p. 1479, Nov. 2009.

[5] J. Daries, J. Reich, J. Waldo, E. Young, J. Whittinghill, D. Seaton, A. Ho,
and I. Chuang, “Privacy, anonymity, and big data in the social sciences,”
Queue, vol. 12, no. 7, p. 30, July 2014.

[6] J. Bennett, S. Lanning et al., “The netflix prize,” in Proceedings of KDD
cup and workshop, vol. 2007. New York, NY, USA, 2007, p. 35.

[7] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large
sparse datasets,” in Security and Privacy, 2008. SP 2008. IEEE Sympo-
sium on. IEEE, 2008, pp. 111–125.

[8] ——, “De-anonymizing social networks,” in Security and Privacy, 2009
30th IEEE Symposium on. IEEE, 2009, pp. 173–187.

[9] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise
to sensitivity in private data analysis,” in Proc. Theory of Cryptography
Conference, Mar. 2006, pp. 265–284.

[10] ——, “Calibrating noise to sensitivity in private data analysis,” in Theory
of Cryptography Conference. Springer, 2006, pp. 265–284.

[11] S. E. Fienberg, A. Rinaldo, and X. Yang, “Differential privacy and
the risk-utility tradeoff for multi-dimensional contingency tables,” in
International Conference on Privacy in Statistical Databases. Springer,
2010, pp. 187–199.

[12] A. Ghosh, T. Roughgarden, and M. Sundararajan, “Universally utility-
maximizing privacy mechanisms,” SIAM Journal on Computing, vol. 41,
no. 6, pp. 1673–1693, 2012.

[13] X. He, A. Machanavajjhala, and B. Ding, “Blowfish privacy: Tuning
privacy-utility trade-offs using policies,” in Proceedings of the 2014
ACM SIGMOD international conference on Management of data. ACM,
2014, pp. 1447–1458.

[14] A. Makhdoumi and N. Fawaz, “Privacy-utility tradeoff under statistical
uncertainty,” in Communication, Control, and Computing (Allerton),
2013 51st Annual Allerton Conference on. IEEE, 2013, pp. 1627–
1634.

[15] V. Rastogi, D. Suciu, and S. Hong, “The boundary between privacy
and utility in data publishing,” in Proceedings of the 33rd international
conference on Very large data bases. VLDB Endowment, 2007, pp.
531–542.

[16] J. Brickell and V. Shmatikov, “The cost of privacy: destruction of data-
mining utility in anonymized data publishing,” in Proceedings of the
14th ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2008, pp. 70–78.

[17] K. Chaudhuri and D. Hsu, “Sample complexity bounds for differentially
private learning,” in Proceedings of the 24th Annual Conference on
Learning Theory, 2011, pp. 155–186.

[18] M. F. Balcan, A. Blum, S. Fine, and Y. Mansour, “Distributed learning,
communication complexity and privacy,” in Conference on Learning
Theory, 2012, pp. 26–1.

[19] A. Beimel, K. Nissim, and U. Stemmer, “Characterizing the sample
complexity of private learners,” in Proceedings of the 4th conference on
Innovations in Theoretical Computer Science. ACM, 2013, pp. 97–110.

[20] C. Brinton and M. Chiang, “MOOC performance prediction via click-
stream data and social learning networks,” in Proc. IEEE Conf. Comput.
Commun., April 2015, pp. 2299–2307.

[21] F. G. Martin, “Will massive open online courses change how we teach?”
Comm. ACM, vol. 55, no. 8, pp. 26–28, Aug. 2012.

[22] J. Knox, S. Bayne, H. MacLeod, J. Ross, and C. Sinclair, “MOOC
pedagogy: the challenges of developing for coursera,” Online Newsletter
of the Association for Learning Technologies, Aug. 2012.

[23] R. G. Baraniuk, “Opening education,” The Bridge on Undergraduate
Engineering Education, vol. 43, no. 2, pp. 41–47, Summer 2013.

[24] J. Wilkowski, A. Deutsch, and D. Russell, “Student skill and goal
achievement in the mapping with Google MOOC,” in Proc. 1st ACM
Conf. on Learning at Scale, Mar. 2014, pp. 3–10.

[25] P. Guo and K. Reinecke, “Demographic differences in how students
navigate through MOOCs,” in Proc. 1st ACM Conf. on Learning at
Scale, Mar. 2014, pp. 21–30.

[26] J. Qiu, J. Tang, T. X. Liu, J. Gong, C. Zhang, Q. Zhang, and Y. Xue,
“Modeling and predicting learning behavior in moocs,” in Proceedings
of the Ninth ACM International Conference on Web Search and Data
Mining, Feb. 2016, pp. 93–102.

[27] J. Zhang, X. Shi, I. King, and D.-Y. Yeung, “Dynamic key-value
memory networks for knowledge tracing,” in Proceedings of the 26th
International Conference on World Wide Web, Apr. 2017, pp. 765–774.

[28] X. Wang, D. Yang, M. Wen, K. Koedinger, and C. Rosé, “Investigating
how student’s cognitive behavior in MOOC discussion forums affect
learning gains,” in Proc. Intl. Conf. Educ. Data Min., June 2015, pp.
226–233.

[29] S. Tomkins, A. Ramesh, and L. Getoor, “Predicting post-test perfor-
mance from online student behavior: A high school MOOC case study,”
in Proc. Intl. Conf. Educ. Data Min., June 2016, pp. 239–246.

[30] K. Koedinger, J. Kim, J. Jia, E. McLaughlin, and N. Bier, “Learning is
not a spectator sport: Doing is better than watching for learning from a
MOOC,” in Proc. ACM Conf. Learn at Scale, Mar. 2015, pp. 111–120.

[31] T.-Y. Yang, C. G. Brinton, C. Joe-Wong, and M. Chiang, “Behavior-
Based Grade Prediction for MOOCs Via Time Series Neural Networks,”
IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 5,
pp. 716–728, 2017.

[32] S. Halawa, D. Greene, and J. Mitchell, “Dropout prediction in MOOCs
using learner activity features,” in Proc. European MOOCs Stakeholders
Summit, Feb. 2014, pp. 58–65.

[33] J. Whitehill, J. Williams, G. Lopez, C. Coleman, and J. Reich, “Beyond
prediction: Towards automatic intervention in MOOC student stop-out,”
in Proc. Intl. Conf. Educ. Data Min., June 2015, pp. 171–178.

[34] Family educational rights and privacy act (FERPA). https://www2.ed.
gov/policy/gen/guid/fpco/ferpa/index.html?

[35] F. Pittaluga, S. Koppal, and A. Chakrabarti, “Learning privacy
preserving encodings through adversarial training,” arXiv preprint
arXiv:1802.05214, Feb. 2018.

[36] N. Raval, A. Machanavajjhala, and L. P. Cox, “Protecting visual secrets
using adversarial nets,” in Computer Vision and Pattern Recognition
Workshops (CVPRW), 2017 IEEE Conference on. IEEE, 2017, pp.
1329–1332.

[37] H. Edwards and A. Storkey, “Censoring representations with an adver-
sary,” arXiv preprint arXiv:1511.05897, 2015.

[38] C. Huang, P. Kairouzyz, X. Chen, S. L., and R. Rajagopal, “Context-
aware generative adversarial privacy,” arXiv preprint arXiv:1710.09549,
Dec. 2017.

[39] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[40] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[41] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning.
MIT Press, 2016.

[42] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[43] A. S. Lan, C. G. Brinton, T. Yang, and M. Chiang, “Behavior-based
latent variable model for learner engagement,” in Proc. Intl. Conf. Educ.
Data Min., June 2017, pp. 64–71.

[44] A. Narayanan, H. Paskov, N. Z. Gong, J. Bethencourt, E. Stefanov,
E. C. R. Shin, and D. Song, “On the feasibility of internet-scale author
identification,” in Security and Privacy (SP), 2012 IEEE Symposium on.
IEEE, 2012, pp. 300–314.

