ECE 20875
Python for Data Science

Chris Brinton and Qiang Qiu

(Adapted from material developed by Profs. Milind Kulkarni,
Stanley Chan, Chris Brinton, David Inouye)

inheritance

reusing functionality

class Person :
* We often want to reuse functionality from def __init__(self, name)

- self.name = name
an existing class

def getName(self)

return self.name
e \WWhen a new class that has some extra

functionality compared to an old class p = Person(“Bob”) |
print(p.getName()) #prints “Bob”

e \When a new class Changes/overrides #creating a new class that has a lot in
: : common with “Person”
some functionality of an old class class AgePerson :

def __init__ (self, name, age)

: self.name = name
* One option: Create a new class, and self.age = age

define all the necessary functions
def getName(self)

return self.name
 This is done in the example on the
def getAge(self)

right return self.age

Inheriting from parent class

* This is pretty inefficient if there is a lot of overlap
 |[nstead, we can use inheritance

e Create a new child class that inherits the attributes
of the parent class

e Can then add new attributes to a class to define
new functions and/or add new data

 Updated example using inheritance on the right:

e 1nit__ from AgePerson overrides 1nit
from Person

« When we create a new AgePerson, we use the new
versionof init , but when we call getName(),
we use the old version of getName()

class Person :
def __init_ (self, name)
self.name = name

def getName(self)
return self.name

p = Person(“Bob”)
print(p.getName())

#we can 1nstead let the AgePerson class
inherit from the parent class Person
class AgePerson(Person)
#overrides ___1nit__ from parent
def __init_ (self, name, age)
self.name = name
self.age = age

def getAge(self)
return self.age

reusing when redefining

) _ . : class Person :
Can reuse functionality even more by using the def init (self, name)

Super() fUﬂCtIOﬂ Wlthln d Ch'ld CIaSS self.name = name

def getName(self)

* Tells the class to inherit this method/property return self.name

from the parent, and allows further redefining
p = Person(“Bob”)

» Updated example on the right: print(p.getName())
L o class AgePerson(Person) :
e super().__init__ () refersto_init__ () def __init_ (self, name, age) :
of the parent class Person #Tell AgePerson to inherit __init__

from parent class
_ o super().__init__ (name)
 This tells AgePersontoreuse __1nit__ from

Person in the redefinition, and then we can add #Then we can add additional
additional functionality on top of it functionality to the new init
self.age = age
* Can similarly reuse functionality when redefining def getAge(self)
other functions return self.age

overriding default methods

e All classes inherit from the built-in basic class CIZZ]SC Peirf]ci’fc‘ : (celf. name) :
called object by default self.name = name |
* Provides some default functionality like deﬁe%ﬁmagg{?eg% e:
__str__and _repr__ methods '
p = Person(“Bob”)
« _ repr__is the “official” string representation of print(p.getName())

an object, more general than just printing,
useful for debugging

class AgePerson(Person) :
def __init_ (self, name, age) :
super().__init__ (name)

e _str__ isthe “informal” string self.age = age
representation of an object, used for creating def getAge(self) :
readable end user output return self.age

def _ repr_ (self) :

e Overriding these gives us the ability to change return self.name + “, “ + str(self.age)

how objects are represented (__repr) or printed

p = AgePerson(“Bob"”, 33)
(_str__or__repr_) repr(p) #prints ‘Bob, 33’

uses of inheritance we’ve seen

 \We’ve seen inheritance used in many
Python packages we have used in this class

linear model

* Distribution classes (hormal, exponential,
etc.) in sklearn all inherit from generic /
classes that provide some default

functionality Linear
Regression

* These classes override key methods (like
pdf and cdf) to provide distribution-

specific implementations

e Several regression models in sklearn
inherit functionality from 1linear model

what about polymorphism or interfaces?

class Animal :
def __init__ (self, name) :
self.name = name
* You may have heard of polymorphism before
def talk(self)

_ , _ . . . raise NotImplementedError(“Subclass
e Call a function on an object, but invoke different functionality must implement talk method”)

depending on exactly what class an object is class Cat(Animal) :

def talk(self):
e Can write very generic code since you do not have to know return ‘Meow!’

exactly what type of object you are working with class Duck: # Notice doesn’t inherit

def __init__ (self, name) :
o Used extensively in languages like Java and C++ through the self.name = name # But has the right var.
. . Y . Juag J def talk(self): # And implements this method

animals = [Cat(‘Missy’), Cat(‘Mr. Mistoffelees'),

* Python gets you this “for free”: Duck(“Sammy’)]

 Programs are not written with types for animal in animals:
J yp print(animal.name + ‘: ‘ + animal.talk())

* |Invoke any method on any object if the object’s class has the

method defined (called duck typing) IF 1T LOOKS LIKE A DUCK,

AND QUACKS LIKE A DUCK,
that implement the same method(s) 'S A DUCK,

* No need for any actual relationship between different classes

