
Bash Basics
What is Bash?
Bash is a shell. Think of this as the interface between you and all of the applications and
services you might want to run on your computer. A shell is a program that is running and
mediating your interaction with other programs on your computer: it is responsible for
coordinating input and output, launching programs, etc. In fact, the original versions of
Windows were called "graphical shells”—they let you run applications using a graphical user
interface instead of the command line.

Unix-like systems (including Linux and MacOS) have command-line shells that let you interact
with your computer using a command-line interface: typing commands and getting responses
in text. One of the most popular command-line shells is called bash, and it is available on
virtually all Unix-like systems—and is the default command line shell on most Linux
installations as well as MacOS.

Shells also provide scripting languages that let you coordinate multiple actions to perform a
single task. For example, you could run one program, and, based on the result of that program,
run a second program multiple times. Or you could run one program that generates a list of all
the files in a directory, and then take the output of that program to run a second program on
each of the files in the directory. We will go over some of the basic things you can do with bash
here—there are many resources online that cover the full features

Command completion
Bash lets you “complete” commands without having to type them all the way out. You can hit
[tab] to try to finish a command, and bash will look for commands (or filenames) that start with
the partial text you have typed to try and complete the command. For example, suppose you
have a directory with the following contents:

milind@scholar-fe06:~/bash-lect $ ls
bar baz cmdline.sh foo input.py outerr.py sample.sh testvar.sh

The command cat will list the contents of a file:

milind@scholar-fe06:~/bash-lect $ cat foo
This is a sample text file

But if I type a command partially, then hit tab:

milind@scholar-fe06:~/bash-lect $ cat f[tab]

Then bash will complete the command for me. In this case, there is only one file that starts with
‘f’, so I get the complete command that I expect:

milind@scholar-fe06:~/bash-lect $ cat foo

But if there is more than one option to complete the command:

milind@scholar-fe06:~/bash-lect $ cat b[tab]

Then bash will fill in what it can—in this case, there is more than one file starting with a ‘b’, but
both start with ‘ba’:

milind@scholar-fe06:~/bash-lect $ cat ba

And if I hit tab a second time, bash will show me the possible options for files that start with
‘ba’:

milind@scholar-fe06:~/bash-lect $ cat ba[tab]
bar baz
milind@scholar-fe06:~/bash-lect $ cat ba

And I can then continue typing.

Command history
Bash also remembers the commands that I have executed in the past, letting me access them
if I want to re-execute them, or modify them. Simply hitting [up] at the command line will step
backwards through your command history, and hitting [down] will then step back forward
through your history. You can also print out the history of commands you have executed in the
past:

milind@scholar-fe06:~/bash-lect $ history

…
 349 ls
 350 cat foo
 351 history
milind@scholar-fe06:~/bash-lect $

You can then execute a particular command from your history by typing “![n]” where n is the
number of the command:

milind@scholar-fe06:~/bash-lect $!350
cat foo
This is a sample text file

You can also execute the last command by typing !!

milind@scholar-fe06:~/bash-lect $!!
cat foo
This is a sample text file

There are a lot of other things you can do with bash history — executing a command but
modified slightly, re-executing the last time you used a specific command, etc., but we will not
cover them here.

Chaining together multiple commands
You can also use bash to chain together multiple commands:

milind@scholar-fe06:~/bash-lect $ cat foo; cat bar
This is a sample text file

This is a different text file

Or:

milind@scholar-fe06:~/bash-lect $ cat foo; cat bar; cat baz
This is a sample text file

This is a different text file

This is a third text file that lets us see how tab completion works

Chaining together commands with semicolons is nice. But what happens if one of those
commands has an error? For example, if you try to cat a file that doesn’t exist:

milind@scholar-fe06:~/bash-lect $ cat nope; cat foo
cat: nope: No such file or directory
This is a sample text file

Maybe that’s what you want. But what if you want to be smarter. For example, suppose the two
commands you are trying to run are: “compile this program” and “execute this program.” If
compiling the program fails (say, because you have a syntax error in your code), you don’t want
to then run the program that does not exist — that will just cause another error.

milind@scholar-fe06:~/bash-lect $ gcc test.c ; ./a.out
test.c:4:27: error: expected ';' after expression
 printf("Hello, World!")
 ^
 ;
1 error generated.
zsh: no such file or directory: ./a.out

You only want the second command to run if the first command succeeds. We can do this by
using a logical and connective, instead of a semi-colon:

milind@scholar-fe06:~/bash-lect $ gcc test.c && ./a.out
test.c:4:27: error: expected ';' after expression
 printf("Hello, World!")
 ^
 ;
1 error generated.

Note that now, a.out never gets executed, because the first command fails. However, if the
first command succeeds, the second command will correctly execute:

milind@scholar-fe06:~/bash-lect $ gcc test.c && ./a.out
Hello, World!

The way && works is that it keeps executing commands left-to-right until it encounters a
command that fails. (In class, we explained why it works this way — it’s a short circuit operator.
As soon as a command fails, that means it is impossible for a logical-and to evaluate to true,
so bash stops trying. As long as commands are succeeding, it is still possible for logical-and to
evaluate to true, so bash keeps going.)

So what if you want the opposite behavior? Execute a command only if the previous command
failed (maybe you want to run a command that does some error handling if the first command
fails). You can do this with the || operator:

milind@scholar-fe06:~/bash-lect $ cat nope || cat foo
cat: nope: No such file or directory
This is a sample text file

But if the first command succeeds, then bash will not execute the second command:

milind@scholar-fe06:~/bash-lect $ cat bar || cat foo
This is a different text file

Shell scripts
One simple thing you can do with bash is put together multiple commands into a single file,
and treat that as a new command that you can invoke. This file is called a shell script. Think of
this as being able to create custom commands. We will look at some simple examples where
you are using shell scripts to just run multiple commands one after another. But you can also
use shell scripts to do more complicated things (run loops, for example).

Here is a sample shell script:

milind@scholar-fe06:~/bash-lect $ cat sample.sh
#!/usr/bin/env bash

cat foo
cat bar

Ignoring the line at the top, all we are doing is writing down a sequence of commands to
execute (in this case, printing out the contents of two files). But what is that line at the top?
When you run a shell script, we need to know what interpreter to use to execute the script. In
this case, we want to use bash itself! To do that, we write #!/usr/bin/env bash. This lets
the operating system know that the commands that are coming next in the script should be
executed using bash (i.e., they are bash commands). If we wanted to use python instead, we
might write: #!/usr/bin/env python

As an aside, you might often see the first line in a script written a little differently (#!/usr/
bin/bash). This is an alternate way of invoking bash as the interpreter, but relies on bash
being in a particular location on the machine, which may not always be the case.

Once you create a shell script, the next thing you have to do is set the permissions on the file
so that the operating system knows that it can be executed. To do this, we use the command
chmod:

milind@scholar-fe06:~/bash-lect $ chmod u+x sample.sh

Which says “change the permissions on sample.sh to add (+) the executable (x) flag for the
user (u).” You could instead change the permissions so that anyone can execute the script, not
just you:

milind@scholar-fe06:~/bash-lect $ chmod a+x sample.sh

(Note that you can also use chmod to make a file readable/writeable by you/anyone, etc., but
we won’t go into the details of that here).

Now when you run sample, the script executes both commands:

milind@scholar-fe06:~/bash-lect $./sample.sh
This is a sample text file

This is a different text file

Variables
Bash, recall, is a full-on scripting language, even though you can also use it interactively as a
command-line shell. What you’re really doing, in that case, is running bash commands one at a
time, instead of putting them together into a whole program (interestingly, you can run other
scripting languages—including Python!—in a similar manner). Like any good programming
language, bash lets you define variables, names that correspond to values:

milind@scholar-fe06:~/bash-lect $ MYVAR=foo
milind@scholar-fe06:~/bash-lect $ echo $MYVAR
foo

That first line defines a variable named MYVAR, and sets it equal to foo. Note that it is
important that there are not spaces between MYVAR and =. By convention, variables in bash
are in capital letters, but they do not have to be.

The second line is a little more interesting. ${variablename} in bash replaces the variable with
the value of that variable. So echo $MYVAR is equivalent to echo foo

An important point, here, is that MYVAR is a local variable—it is only accessible to the current
bash instance. Notably, this means that if you run a shell script, MYVAR will not exist within that
shell script. This is similar to how if you have a local variable in a function in C, it is only
accessible within that function. To make a variable global (well, sort of — in reality, this makes
the variable accessible until the bash instance exits), you export it:

milind@scholar-fe06:~/bash-lect $ export MYVAR

milind@scholar-fe06:~/bash-lect $ export NEWVAR=bar

Then, within a shell script, you can access the variable just like you would any other way:

milind@scholar-fe06:~/bash-lect $ cat testvar.sh
#!/usr/bin/env bash

cat $LOCALVAR

milind@scholar-fe06:~/bash-lect $ export LOCALVAR=baz
milind@scholar-fe06:~/bash-lect $./testvar.sh
This is a third text file that lets us see how tab completion works

milind@scholar-fe06:~/bash-let $ export LOCALVAR=bar
milind@scholar-fe06:~/bash-lect $./testvar.sh
This is a different text file

You can also define new variables based on old ones (bash variables are essentially always
strings, though some commands implicitly treat strings as numbers):

milind@scholar-fe06:~/bash-lect $ VAR1=foo; echo $VAR1
foo
milind@scholar-fe06:~/bash-lect $ VAR2=$VAR1; echo $VAR2
foo
milind@scholar-fe06:~/bash-lect $ VAR3=${VAR1}.out; echo $VAR3
foo.out

Note that in the last example, we put VAR1 in braces. This just guarantees that we are going to
access a variable named VAR1. It is not always necessary, but it is good practice.

Redirection
When a program prints output or reads input in Unix-like systems, it always writes to or reads
from file descriptors that correspond to the destination (or source) of the content being input/
output. But the system provides special file descriptors called stdout — for printing “regular”
output — stdin — for reading regular input — and stderr — for printing error/warning
information. When you invoke the “standard” print command in most programming languages
(e.g., printf in C or print in Python), you are going to print to stdout. When you invoke the
“standard” input command (e.g., scanf in C or sys.stdin.readline() in Python), you are
reading from stdin.

By default, stdout prints to the screen, and stdin reads from the keyboard input (i.e., the
command line):

milind@scholar-fe06:~/bash-lect $ cat input.py
#!/usr/bin/env python3

import sys

inp = sys.stdin.readline()

print("Read this line: " + inp)
milind@scholar-fe06:~/bash-lect $./input.py
Hello
Read this line: Hello

Here, for clarity, we are highlighting input provided from the keyboard in blue, and output sent
by the program to the screen in red.

We can redirect these standard file descriptors in bash to send the output not to the screen but
to a file, or to accept input not from the command line but from an input file. The special
character “>” sends stdout to the specified file (creating the file if one doesn’t exist, and
overwriting the contents of the file if it already exists):

milind@scholar-fe06:~/bash-lect $./input.py > tmp
Hello
milind@scholar-fe06:~/bash-lect $ cat tmp
Read this line: Hello

If you use the special character “>>”, it redirects stdout to the specified file but appends the
output to the file (rather than overwriting the existing file).

milind@scholar-fe06:~/bash-lect $./input.py >> tmp
Hello
milind@scholar-fe06:~/bash-lect $ cat tmp
Read this line: Hello

Read this line: Hello

The special character “<“ redirects stdin to the specified input file (i.e., it is as if the contents
of the input file are typed in from the keyboard):

milind@scholar-fe06:~/bash-lect $./input.py < foo
Read this line: This is a sample text file

You can combine both input redirection and output redirection:

milind@scholar-fe06:~/bash-lect $./input.py < foo > tmp
milind@scholar-fe06:~/bash-lect $ cat tmp
Read this line: This is a sample text file

stderr is often used by programs to print errors and warnings. This is a different file
descriptor than stdout, so redirecting stdout will not redirect stderr (deliberately so: that
way you will see errors as they happen even if you are redirecting output to a file):

milind@scholar-fe06:~/bash-lect $ cat outerr.py
#!/usr/bin/env python3

import sys

print("This goes to stdout")

print("This goes to stderr", file=sys.stderr)

milind@scholar-fe06:~/bash-lect $./outerr.py
This goes to stdout
This goes to stderr
milind@scholar-fe06:~/bash-lect $./outerr.py > tmp
This goes to stderr
milind@scholar-fe06:~/bash-lect $ cat tmp
This goes to stdout

Here, we are redirecting stdout to tmp, but letting stderr print to the screen (coded in
purple for clarity). You can also choose to redirect stderr (e.g., if you want to send errors to a
log) using “2>”:

milind@scholar-fe06:~/bash-lect $./outerr.py > tmp 2> log
milind@scholar-fe06:~/bash-lect $ cat log
This goes to stderr

If you want to redirect both stderr and stdout to the same file, use “&>”:

milind@scholar-fe06:~/bash-lect $./outerr.py &> both
milind@scholar-fe06:~/bash-lect $ cat both
This goes to stderr
This goes to stdout

Pipes
Many times, you will want to run one program and send its output to another program. You
could do this by redirecting the output of one program to a file, then sending that file in as the
input to the second program, but bash provides a simpler facility for doing this: pipes. A pipe
redirects the output of one program to the input of another automatically:

milind@scholar-fe06:~/bash-lect $./outerr.py | ./input.py
This goes to stderr
Read this line: This goes to stdout

Pipes are commonly used to chain together simple utility commands in bash. For example,
listing all the files in a directory is easy:

milind@scholar-fe06:~/bash-lect $ ls -l
total 64
-rwxr-xr-x 1 milind student 8928 Aug 23 09:42 a.out
-rw-r--r-- 1 milind student 31 Aug 21 08:51 bar
-rw-r--r-- 1 milind student 69 Aug 21 08:52 baz
-rw-r--r-- 1 milind student 40 Aug 23 11:55 both
-rwxr--r-- 1 milind student 38 Aug 21 09:08 cmdline.sh

-rw-r--r-- 1 milind student 28 Aug 21 08:51 foo
-rwxr--r-- 1 milind student 96 Aug 21 09:41 input.py
-rw-r--r-- 1 milind student 20 Aug 23 11:55 log
-rwxr--r-- 1 milind student 113 Aug 21 09:44 outerr.py
-rwxr--r-- 1 milind student 37 Aug 22 09:51 sample.sh
-rw-r--r-- 1 milind student 50 Aug 23 09:42 test.c
-rwxr--r-- 1 milind student 36 Aug 22 09:54 testvar.sh
-rw-r--r-- 1 milind student 20 Aug 23 11:55 tmp

But what if I want to only see the files that have the extension “.py”? You can do this by
piping the output of ls to the command grep, which does a string search:

milind@scholar-fe06:~/bash-lect $ ls -l | grep py
-rwxr--r-- 1 milind student 96 Aug 21 09:41 input.py
-rwxr--r-- 1 milind student 113 Aug 21 09:44 outerr.py

In particular, grep <pattern> <filename> will search in the file <filename> and
print out any lines that contain <pattern>.

	Bash Basics
	What is Bash?
	Command completion
	Command history
	Chaining together multiple commands
	Shell scripts
	One simple thing you can do with bash is put together multiple commands into a single file, and treat that as a new command that you can invoke. This file is called a shell script. Think of this as being able to create custom commands. We will look at some simple examples where you are using shell scripts to just run multiple commands one after another. But you can also use shell scripts to do more complicated things (run loops, for example).
	Variables
	Bash, recall, is a full-on scripting language, even though you can also use it interactively as a command-line shell. What you’re really doing, in that case, is running bash commands one at a time, instead of putting them together into a whole program (interestingly, you can run other scripting languages—including Python!—in a similar manner). Like any good programming language, bash lets you define variables, names that correspond to values:
	Redirection
	When a program prints output or reads input in Unix-like systems, it always writes to or reads from file descriptors that correspond to the destination (or source) of the content being input/output. But the system provides special file descriptors called stdout — for printing “regular” output — stdin — for reading regular input — and stderr — for printing error/warning information. When you invoke the “standard” print command in most programming languages (e.g., printf in C or print in Python), you are going to print to stdout. When you invoke the “standard” input command (e.g., scanf in C or sys.stdin.readline() in Python), you are reading from stdin.
	By default, stdout prints to the screen, and stdin reads from the keyboard input (i.e., the command line):
	Pipes
	Many times, you will want to run one program and send its output to another program. You could do this by redirecting the output of one program to a file, then sending that file in as the input to the second program, but bash provides a simpler facility for doing this: pipes. A pipe redirects the output of one program to the input of another automatically:

