ECE 20875 Python for Data Science

Chris Brinton and David Inouye

n-grams and basic natural language processing

text data analysis

- Written text is often treated as a form of data for analysis
- Some types of analyses:
 - Measuring similarity between documents
 - Extracting topics from documents
 - Finding the most frequently occurring words
 - Quantifying the importance of phrases
- Most of these involve breaking up documents into words or "*n*-grams"

Popular example: Latent Dirichlet Allocation (LDA)

documents: combinations of topics topics: combinations of words Topic proportions and **Topics Documents** Seeking Life's Bare (Genetic) Necessities 00 genes are plenty to do the

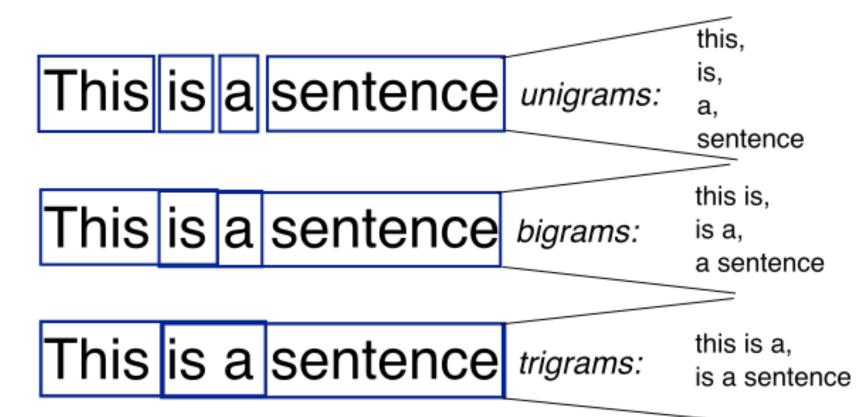
n-grams

- *n*-grams break up a sentence into overlapping subsequences of length *n*
 - *n* typically refers to words or characters (though it could also be e.g., syllables)
 - Unigrams (n=1), bigrams (n=2), trigrams (n=3), ...
- Consider the string: "I saw a cat"
 - Word-based 3-grams:

"I saw a", "saw a cat"

Character-based 3-grams:

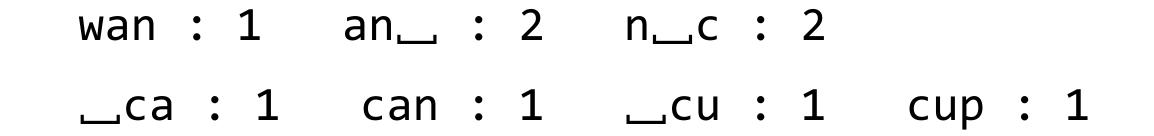
word-based n-gram extraction

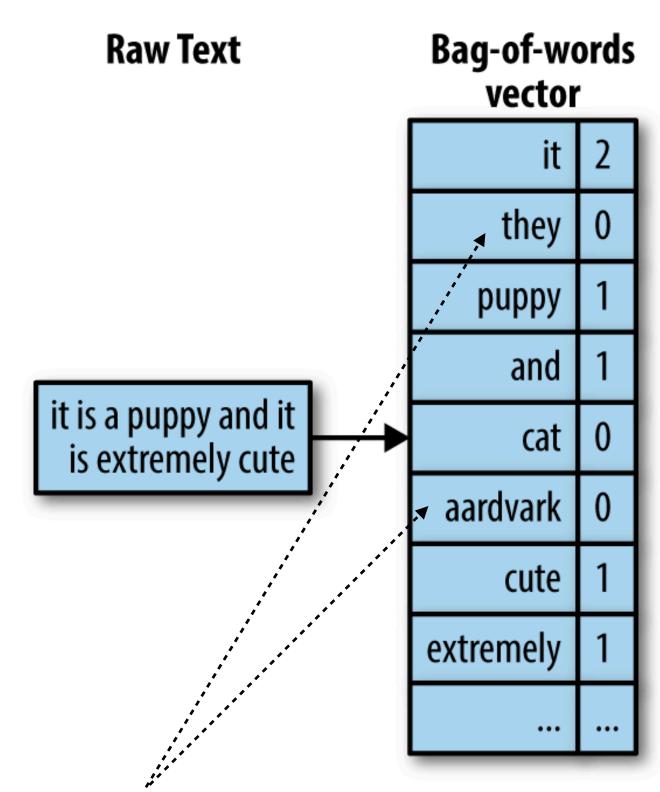


"I_s", "_sa", "saw", "aw_", "w_a", "_a_", "a_c", "a_c", "ca", "cat"

bag-of-words

- The same *n*-gram can appear multiple times in a string
 - This indicates a higher frequency
- Generally we only care about order within an n-gram, not between n-grams
- Bag-of-words model: Order between words (more generally, between n-grams) in a document is not considered
 - We call it "bag-of-words," but it's really "bag-of-*n*-grams"
- For example, consider this string: "wan can cup"
 - bag-of-words of character-based 3-grams:





- Where would the 0s come from?
- We often compare documents by their bag-of-words representations

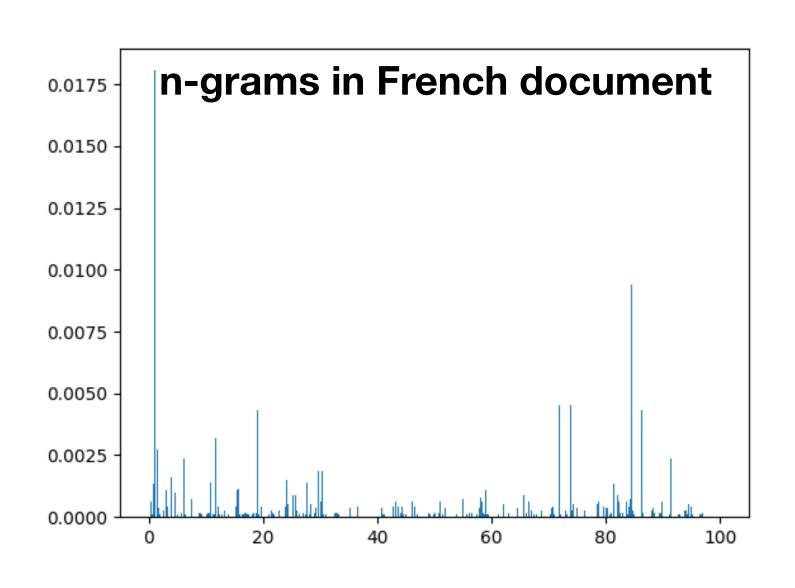
language classification

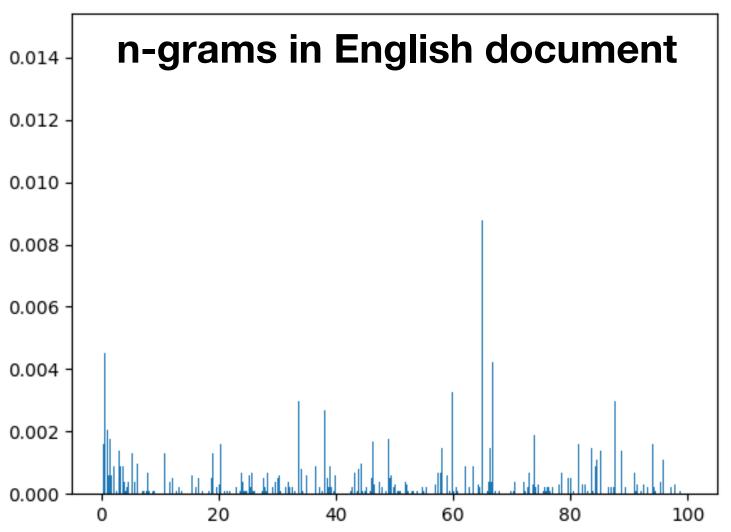
- Consider the commonly encountered language classification problem, i.e., identifying the language in which a document is written
- We could consider the *n*-grams of characters contained in the document
 - Documents written in a particular language will tend to have similar *n*-gram frequencies (e.g., "the" in English vs. "el" in Spanish)
 - We can compare a document of interest to known n-gram language frequencies

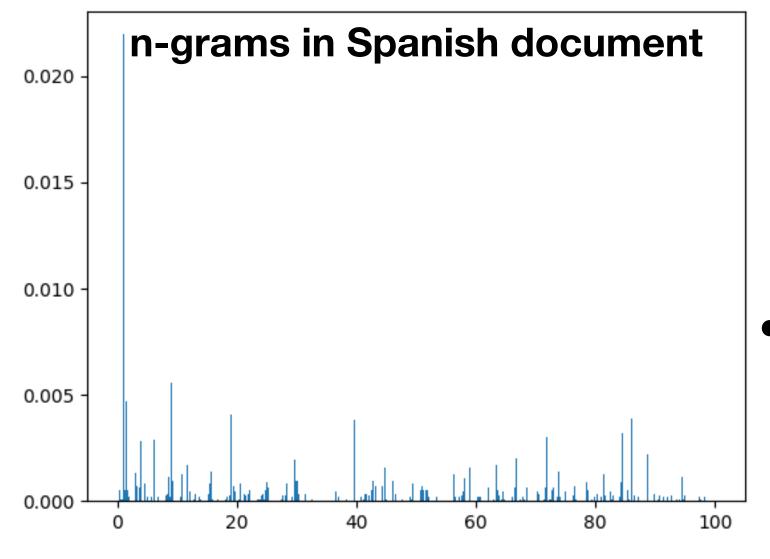
u	unigram		gram	trigram		
е	12.6%	th	3.9%	the	3.5%	
t	9.1%	he	3.7%	and	1.6%	
a	8.0%	in	2.3%	ing	1.1%	
0	7.6%	er	2.2%	her	0.8%	
i	6.9%	an	2.1%	hat	0.7%	
n	6.9%	re	1.7%	his	0.6%	
S	6.3%	nd	1.6%	tha	0.6%	
h	6.2%	on	1.4%	ere	0.6%	

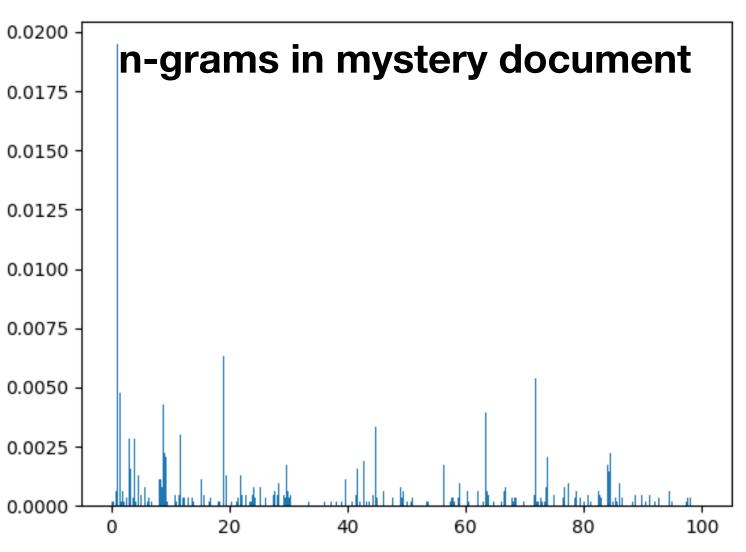
- Can visualize this by building a histogram of the *n*-grams
 - Treat each n-gram across the documents as a separate (categorical) bucket

n-gram histogram examples





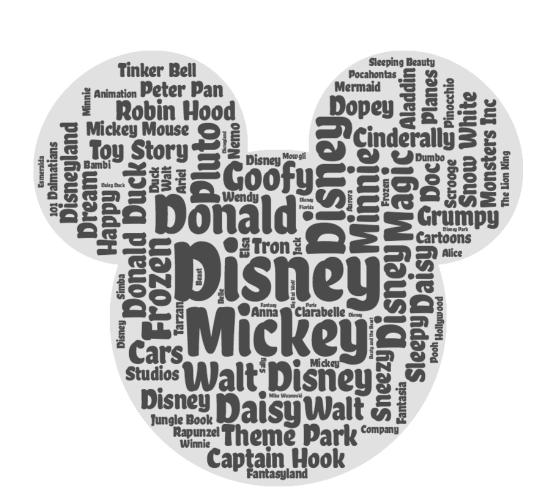




- How would we quantify which language is "closest" to the mystery document?
- We could use the MSE between the *n*-gram vectors

n-gram importance

- How do we quantify the importance of an n-gram in a document?
- One possibility: Count the number of times it occurs, i.e., its frequency
 - More frequently occurring should be more important
- But what about common words like "a", "as", "is", ...?
 - These specific examples are **stopwords**, which we should probably remove from the analysis of "importance" anyway
 - But many high frequency non-stopwords will not provide much information in a given context (e.g., "Disney" in a collection of documents about "Disney World")
- Need to somehow measure how "unique" the n-gram is across documents



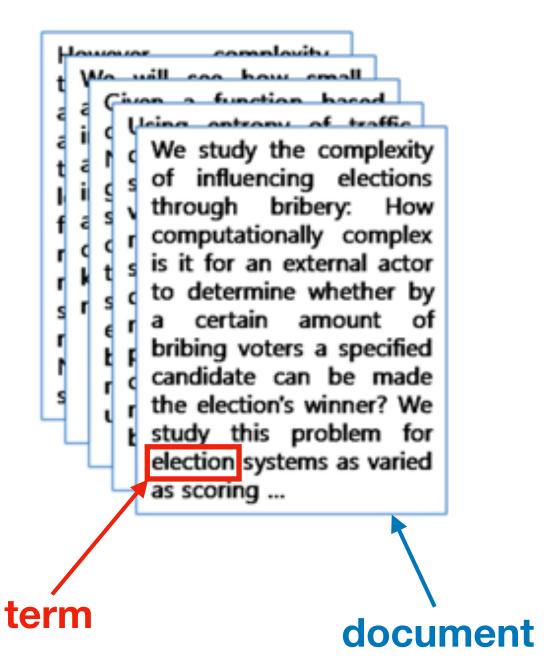
tf-idf score

- A statistic that quantifies this intuition is the term
 frequency-inverse document frequency or tf-idf score
 - One of the most popular schemes used today
 - Let t be a term (n-gram), d be a document, and D be a **corpus** (collection of documents) under consideration
 - The tf-idf score of term t in document d with respect to corpus D is

$$tfidf(t, d, D) = tf(t, d) \cdot idf(t, D)$$

Many different methods for quantifying tf and idf

Corpus



Here we we will assume terms are words, but more generally they can be n-grams

tf-idf score

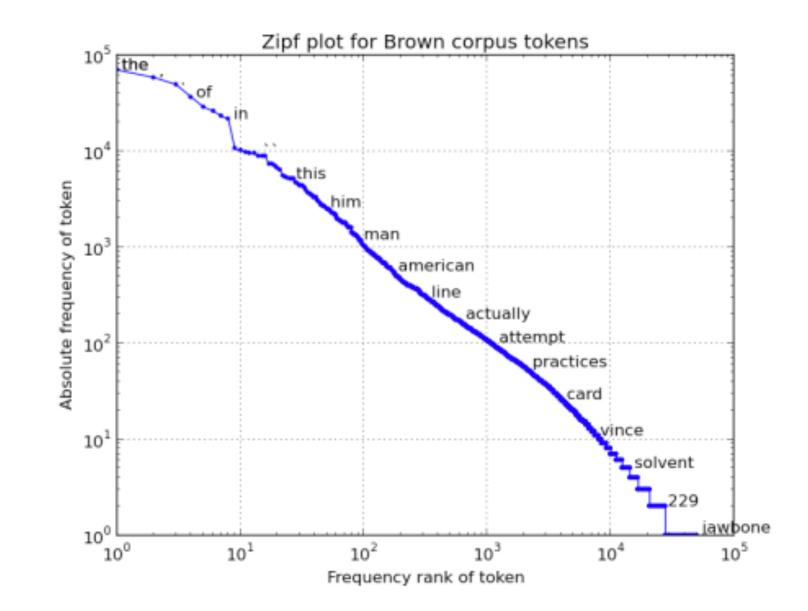
- Term frequency tf(t, d): Typically the fraction of terms in document d which are term t
 - Letting $f_{t,d}$ be the number of occurrences of t in d,

$$tf(t,d) = \frac{f_{t,d}}{\sum_{t'} f_{t',d}}$$

- Inverse document frequency idf(t, D): A measure of how rare term t is across the corpus D (i.e., how much information it provides about a document it appears in)
 - Letting N=|D| be the number of documents in the corpus and n_t be the number of documents where t occurs, it is typically quantified as

$$\mathrm{idf}(t,D) = \log_{10}\left(\frac{n_t}{N}\right)^{-1} = \log_{10}\frac{N}{n_t}$$
 Why log?

Word	Т	F	IDF	TF*IDF		
vvoru	Α	В	וטו	Α	В	
The	1/7	1/7	log(2/2) = 0	0	0	
Car	1/7	0	log(2/1) = 0.3	0.043	0	
Truck	0	1/7	log(2/1) = 0.3	0	0.043	
Is	1/7	1/7	log(2/2) = 0	0	0	
Driven	1/7	1/7	log(2/2) = 0	0	0	
On	1/7	1/7	log(2/2) = 0	0	0	
The	1/7	1/7	log(2/2) = 0	0	0	
Road	1/7	0	log(2/1) = 0.3	0.043	0	
Highway	0	1/7	log(2/1) = 0.3	0	0.043	



example

Dataset: Take the following four strings to be (very small) documents comprising a (very small) corpus:

- 1. "The sky is blue."
- 2. "The sun is bright today."
- 3. "The sun in the sky is bright."
- 4. "We can see the shining sun, the bright sun."

Task: Filter out obvious stopwords, and determine the tf-idf scores of each term in each document.

solution

- After stopword filtering: (1) "sky blue", (2) "sun bright today", (3) "sun sky bright", (4) "can see shining sun bright sun"
- TF: Find doc-word matrix, then normalize rows to sum to 1

$$f_{t,d}$$

	blue	bright	can	see	shining	sky	sun	today
1	1	0	0	0	0	1	0	0
2	0	1	0	0	0	0	1	1
3	0	1	0	0	0	1	1	0
4	0	1	1	1	1	0	2	0

++(+ d) -	$f_{t,d}$
tf(t,d) =	$\sum_{t'} f_{t',d}$

	blue	bright	can	see	shining	sky	sun	today
1	1/2	0	0	0	0	1/2	0	0
2	0	1/3	0	0	0	0	1/3	1/3
3	0	1/3	0	0	0	1/3	1/3	0
4	0	1/6	1/6	1/6	1/6	0	1/3	0

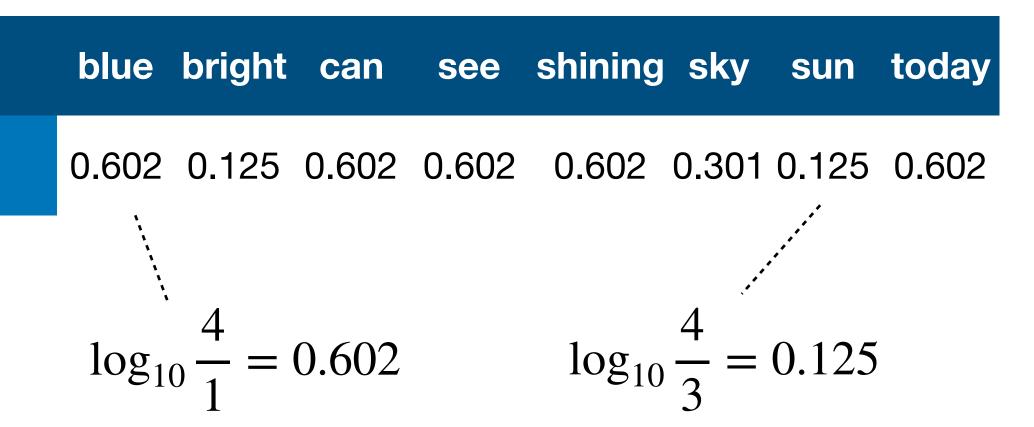
solution

• IDF: Find number of documents each word occurs in, then compute formula

$$f_{t,d}$$

	blue	bright	can	see	shining	sky	sun	today	
1	1	0	0	0	0	1	0	0	
2	0	1	0	0	0	0	1	1	
3	0	1	0	0	0	1	1	0	
4	0	1	1	1	1	0	2	0	N =
n_t	1	3	1	1	1	2	3	1	

$$idf(t, D) = \log_{10} \frac{N}{n_t}$$

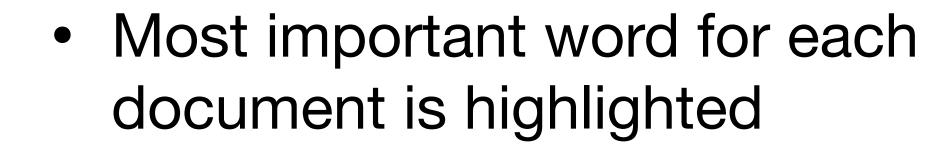


solution

tf(t,d)

	blue	bright	can	see	shining	sky	sun	today
1	1/2	0	0	0	0	1/2	0	0
2	0	1/3	0	0	0	0	1/3	1/3
3	0	1/3	0	0	0	1/3	1/3	0
4	0	1/6	1/6	1/6	1/6	0	1/3	0

 TF-IDF: Multiply TF and IDF scores, use to rank importance of words within documents

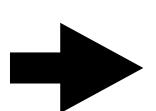


idf(t,D)

blue	bright	can	see	shining	sky	sun	today
0.602	0.125	0.602	0.602	0.602	0.301	0.125	0.602

$$tfidf(t, d, D) = tf(t, d) \cdot idf(t, D)$$

	blue	bright	can	see	shining	sky	sun	today
1	0.301	0	0	0	0	0.151	0	0
2	0	0.0417	0	0	0	0	0.0417	0.201
3	0	0.0417	0	0	0	0.100	0.0417	0
4	0	0.0209	0.100	0.100	0.100	0	0.0417	0



text preprocessing

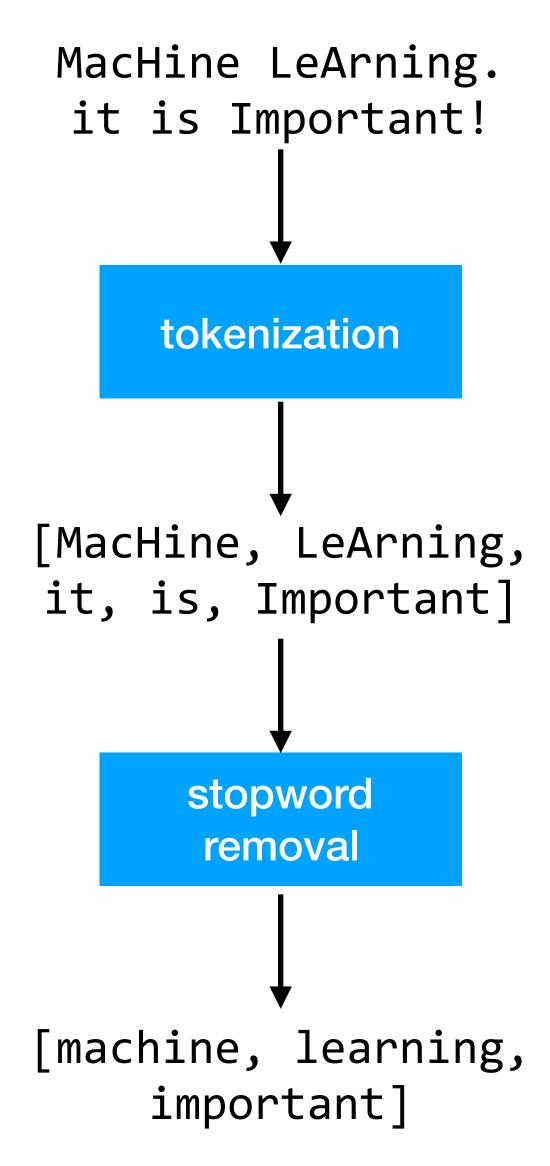
- Typically apply a series of preprocessing steps prior to analysis
 - Mostly using Python's n1tk (natural language processing toolkit) library

1. Tokenization

- Break text into tokens, e.g., n-grams of words (nltk.word_tokenize(string) or string.split())
- Remove non-word characters, e.g., punctuation

2. Stopword removal

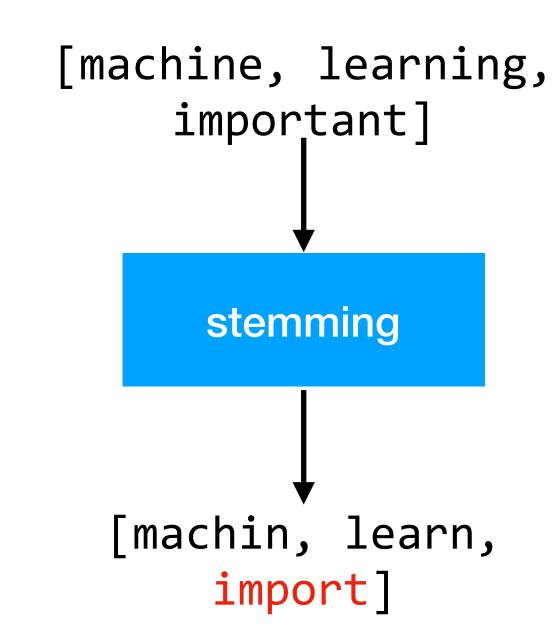
- Make words lowercase (s.lower())
- Remove common word tokens (stopwords.words('english'))

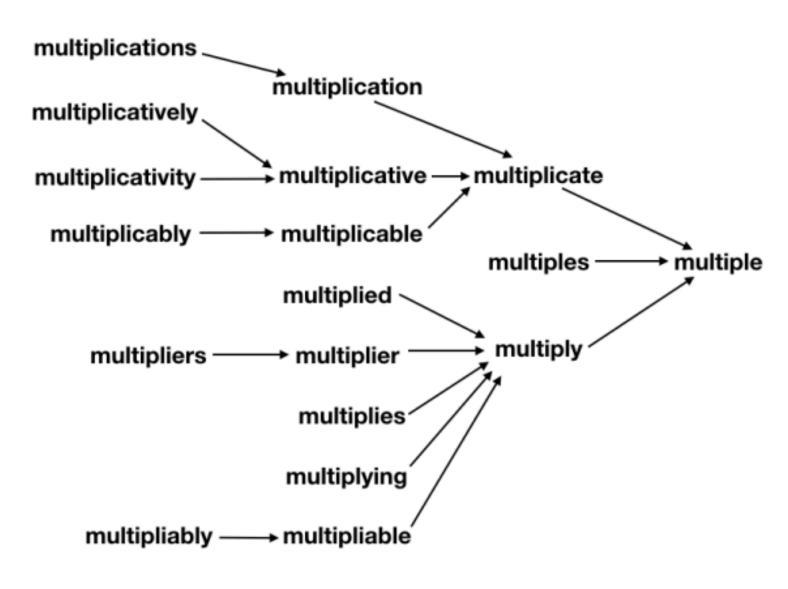


text preprocessing

3. Stemming / Lemmatizing

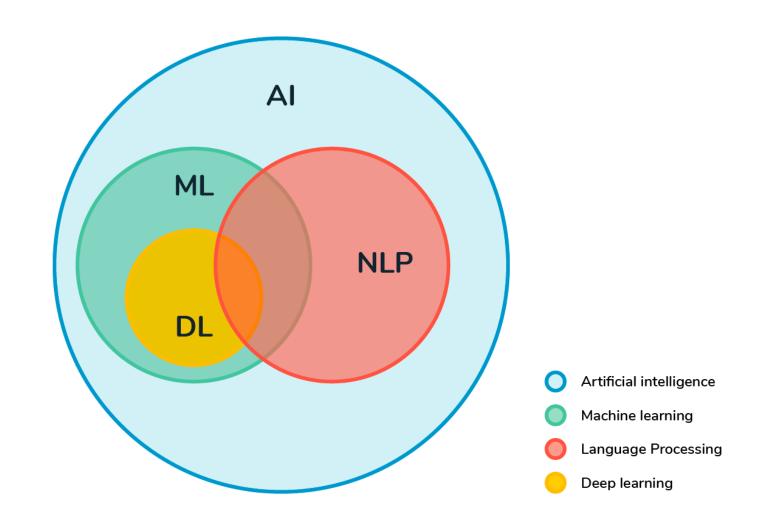
- **Stemming** reduces inflected words to their word stem (e.g., studies, studying -> studi)
- Lemmatization maps words to their dictionary form, representing them as words (e.g., studies, studying -> study)
 - Requires part-of-speech (POS) specification
- Lemmatization is more complex (we need to tag a words POS to get the right result), but preferred when possible (e.g., on the right, the stemmed version of important is import)
- from nltk.stem import PorterStemmer,
 WordNetLemmatizer





natural language processing

- What we have been studying are specific methods in natural language processing, or NLP
 - NLP is concerned with how to automatically analyze large corpuses of text
- Two main classes of NLP: rules-based and statistical
 - tf-idf is a simple (yet widely used) statistical technique
 - Today's innovations are largely in the statistical category, leveraging *machine learning*
- Key is building knowledge representations



natural language processing

- Some common functions of NLP
 - Machine translation: Translating between languages (e.g., Google translate)
 - Speech recognition: Determine the textual representation of an audio track (e.g., Siri)
 - Document summarization: Determine an effective summary of a document (e.g., Watson)
- All of these are constantly being innovated with new NLP algorithms

