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neural networks
• Show up everywhere (including in pop culture)


• Machine translation


• Image recognition


• Video generation


• …


• Form the basis of the deep learning field


• Too many use cases for us to cover in this class


• We will focus on neural networks used as classifiers



neurons
• The fundamental building blocks of neural 

networks are called neurons 

• Each has an activation function, modeled 
loosely after neurons in the brain, which 
“activate” when given enough stimulus


• The human brain is estimated to have more 
than 10 billion neurons, to give you an idea


• Can view a neuron graphically as a “node” with 
inputs, and weights


• The input to the activation function is the dot 
product of the input and weights



perceptrons
• A perceptron is the simplest form of a neuron


• Activation function is the (Heaviside) unit 
step function: either “on” or “off”


• It uses the following linear decision boundary:
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logistic regression: single layer NN
• Learning becomes a problem, because the 

unit step function cannot be differentiated


• We need to somehow “smoothen” the 
transition at 


• One common activation function that does 
this is the sigmoidal activation, shown to the 
right


• We can readily calculate the derivative


• This is just logistic regression: A neural 
network with a single layer and sigmoidal 
activation
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choices of activation functions
• The sigmoid function is computationally 

expensive, though


• There are many other activation functions we 
can use too. For example:


• tanh: Hyperbolic tangent, has steeper 
derivatives than sigmoid


• ReLU: Much easier to compute, but the 
outputs can be very large


• Leaky	ReLU: Allows the output of ReLU 
below 0 to be slightly negative



decision boundaries
• Basic classification problem for neural 

networks:


• I have a set of labeled training data


• Learn a decision boundary that 
separates the two classes of data


• Given a new point


• Classify it using the decision boundary 
you learned


• Similar to other classifiers we looked at!



creating decisions with neurons
• The basic idea of neural networks is to add 

layers of complexity on how decision boundaries 
are defined


• A perceptron will induce a decision boundary 
that is a straight line, i.e.,





• How do we learn the parameters , , and 
 of this model?


• Instead of gradient descent, there is a 
“special” algorithm for perceptrons
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non-linear decision boundaries
• The special perceptron training algorithm is 

guaranteed to converge if a linear decision 
boundary exists


• But if no linear boundary exists, the algorithm 
will not converge, not even to an imperfect 
solution


• Perceptrons cannot learn non-linear decision 
boundaries!


• To learn them, we need two things:


• Multiple layers of neurons


• Smoother activation functions



multi-layer NN structure and intuition
(a) The building block of neural networks (a single neuron) is like a 

little logistic regression model:


1. Weighted summation of  inputs:  


2. Activation function: 


(b) We can put many of these neurons together to form a feed-
forward neural network 
(or sometimes simply deep NN or multilayer NN) 

1. Each neuron computes weighted summation and activation 
function 

2. Stacking the neurons vertically forms a NN layer 

3. Feeding the output of one layer as the input to the next layer 
creates a deep NN (DNN)
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Figure from: Vieira, Sandra & Pinaya, Walter & Mechelli, Andrea. (2017). Using deep learning to 
investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and 

applications. Neuroscience & Biobehavioral Reviews. 74. 10.1016/j.neubiorev.2017.01.002. 



multi-layer NN mathematical form
1. Notice that the weighted summation for neuron  can be seen as a dot product:  




2. When stacking neurons vertically the layer outputs can be seen as a matrix multiplication: 

 


3. Now the activation function is applied independently to each output: 




4. Thus we can write a DNN mathematically as function composition: 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example of non-linear decision boundary

• Consider XOR classification function (clearly 
not a linear decision boundary)


• We will use simple 2 layer NN: 
 




• Solution: 

h = ReLU(Wx + c) = max{0,Wx + c}
y = wTh

W = [1 1
1 1], c = [ 0

−1], w = [ 1
−2]

https://www.deeplearningbook.org/contents/mlp.html

https://www.deeplearningbook.org/contents/mlp.html


architecture and parameters of NN
• Depth: # of layers


• Width: # of neurons per layer


• Activations: sigmoid, ReLU, tanh, etc.

Depth

Width 1

Width 2



neural network architectures
• A plethora of neural network architectures have been 

proposed, for different applications


• Multi-layer Perceptron (MLP): Cascading perceptrons


• Recurrent Neural Networks (RNN): Sequential data 
modeling


• Convolutional Neural Networks (CNN): Image 
recognition


• Long Short Term Memory (LSTM): Memory cells with 
“forgetting” factors


• Transformer (most recent), Gated Recurrent Units 
(GRU), Hopfield Networks, Boltzmann Machines, 
Generative Adversarial Networks (GAN), …



learning neural networks
• (Batch) Gradient descent (GD) can be computationally expensive for large datasets (e.g, 1M images)


• Every update requires computing and summing  gradients 



• If we add a normalizing constant of , we can view this update as taking the expected gradient 
over all data samples: 




• Stochastic gradient descent (SGD) massively reduces the computational complexity by only using 1 
sample at each time step , : 
 




• Note that the variance of the steps is much higher but the cost is much lower 

• Sometimes called amortized learning because it amortizes (spreads out) the computational cost 
across many iterations


• Mini-batch gradient descent is actually used in practice where often 64, 128 or 256 samples are 
used in each batch (bridging between SGD and GD)
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SGD for a sigmoidal neuron
• Letting  be the label of datapoint ,  be the vector of weights, and 

 be the datapoint vector, define the error  of the output of a 
specific input:





• For SGD, we only need the partial derivative for one specific input 
 




• Remember that  when  is a sigmoid
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SGD for a sigmoidal neuron
• From previous slide: 

 




• Thus, our SGD update rule becomes: 
 

 
 




• Importantly,  is reused for every , so we only have to compute it once for each 

∂E(xi)
∂wj

=
∂E(xi)

∂f(sum)
⋅

∂f(sum)
∂sum

⋅
∂sum
∂wj

= − (yi − f(sum)) ⋅ f(sum)(1 − f(sum))

Denote as δ0 since same for every wj

⋅ xij

w(t+1)
j = w(t)

j + α ⋅ δ0 ⋅ xij

w(t+1) = w(t) + α ⋅ δ0 ⋅ xi

δ0 wj t

∑
j

wjxij

xi1

xi2

w1

w2 f ∑
j

wjxij yi



learning complex separators
• So far we have only used one neuron 

(logistic regression)


• Let’s build up to more complex models by 
cascading neurons


• “Running” the classifier is the same as 
before


• Pass weighted sum of inputs through 
activation function, that output 
becomes the input to the next neuron


• This is the inference stage


• The training stage of learning the weights 
is a little trickier, but not by much!
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learning complex separators
• Learning the weights of the edges to the output neuron is easy — same as 

learning for a single neuron


• But what about the weights on the inputs to the hidden layer?
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updating the deltas
• Consider the network below. The output of this hidden layer is a vector . We can write the error of the network as:





• The change in output error with respect to  is:
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what we derived for 
a single neuron previously



essence of backpropagation
• Computing the gradient for each neuron gives 

us the delta ( ,…) for the “upstream” 
neurons, so we can keep pushing error back


• This gives us the essence of 
backpropagation for training neural networks


• Forward pass: Compute outputs of each 
neuron


• Backward pass: Push errors (deltas, 
,…) weighted by edges to compute 

how the weights change.


• Update: Apply stochastic gradient descent 
to each weight. Repeat.
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automatic differentiation
• In the past, the gradients for every model were computed by hand


• Recently, everyone has started to use automatic differentiation


• Actually, the idea has been around for a long time (and our own Prof. 
Jeffrey Siskind worked on this many years ago)


• Only recently popularized in the software packages TensorFlow (Google) 
and PyTorch (Facebook)


• Importantly, this enables model definition and learning algorithm to be 
decoupled 

• Define your model however you want, just like writing a program, then use 
automatic differentiation to automatically learn the model



implementing neural networks
• sklearn now has a built in MLP module:


from	sklearn.neural_network	import	MLPClassifier	

mlp	=	MLPClassifier(hidden_layer_sizes=(13,13,13),max_iter=500)	

• For more complex neural networks, we typically leverage other machine 
learning libraries/platforms:


• pytorch (https://pytorch.org/)


• tensorflow (https://www.tensorflow.org/)


• Both have Python interfaces

https://pytorch.org/
https://www.tensorflow.org/


deep learning training
• With deep learning, we have non-linear 

(and non-convex) error functions


• Therefore SGD is not guaranteed to 
converge to the global optimum solution


• A lot of research is devoted to …


• Speeding up backpropagation, with 
methods like the Adam optimizer, or 
by distributing training across many 
nodes


• Finding conditions for global solutions 
in neural networks


