
ECE 20875
Python for Data Science

Chris Brinton and David Inouye

introduction to
neural networks

neural networks
• Show up everywhere (including in pop culture)

• Machine translation

• Image recognition

• Video generation

• …

• Form the basis of the deep learning field

• Too many use cases for us to cover in this class

• We will focus on neural networks used as classifiers

neurons
• The fundamental building blocks of neural

networks are called neurons

• Each has an activation function, modeled
loosely after neurons in the brain, which
“activate” when given enough stimulus

• The human brain is estimated to have more
than 10 billion neurons, to give you an idea

• Can view a neuron graphically as a “node” with
inputs, and weights

• The input to the activation function is the dot
product of the input and weights

perceptrons
• A perceptron is the simplest form of a neuron

• Activation function is the (Heaviside) unit
step function: either “on” or “off”

• It uses the following linear decision boundary:

sum = [b w1 w2] [
1.0
x
y]

o = f(sum) = {0, sum ≤ 0
1, sum > 0

1.0

x

y

b

w1

w2

o

sum

f(sum)

logistic regression: single layer NN
• Learning becomes a problem, because the

unit step function cannot be differentiated

• We need to somehow “smoothen” the
transition at

• One common activation function that does
this is the sigmoidal activation, shown to the
right

• We can readily calculate the derivative

• This is just logistic regression: A neural
network with a single layer and sigmoidal
activation

sum = 0

1.0

x

y

b

w1

w2

o

o = f(sum) =
1

1 + e−sum

sum

choices of activation functions
• The sigmoid function is computationally

expensive, though

• There are many other activation functions we
can use too. For example:

• tanh: Hyperbolic tangent, has steeper
derivatives than sigmoid

• ReLU: Much easier to compute, but the
outputs can be very large

• Leaky	ReLU: Allows the output of ReLU
below 0 to be slightly negative

decision boundaries
• Basic classification problem for neural

networks:

• I have a set of labeled training data

• Learn a decision boundary that
separates the two classes of data

• Given a new point

• Classify it using the decision boundary
you learned

• Similar to other classifiers we looked at!

creating decisions with neurons
• The basic idea of neural networks is to add

layers of complexity on how decision boundaries
are defined

• A perceptron will induce a decision boundary
that is a straight line, i.e.,

• How do we learn the parameters , , and
 of this model?

• Instead of gradient descent, there is a
“special” algorithm for perceptrons

f(x, y) = {0, b + w1x + w2y ≤ 0
1, b + w1x + w2y > 0

w1 w2
b

x

y

non-linear decision boundaries
• The special perceptron training algorithm is

guaranteed to converge if a linear decision
boundary exists

• But if no linear boundary exists, the algorithm
will not converge, not even to an imperfect
solution

• Perceptrons cannot learn non-linear decision
boundaries!

• To learn them, we need two things:

• Multiple layers of neurons

• Smoother activation functions

multi-layer NN structure and intuition
(a) The building block of neural networks (a single neuron) is like a

little logistic regression model:

1. Weighted summation of inputs:

2. Activation function:

(b) We can put many of these neurons together to form a feed-
forward neural network 
(or sometimes simply deep NN or multilayer NN)

1. Each neuron computes weighted summation and activation
function

2. Stacking the neurons vertically forms a NN layer

3. Feeding the output of one layer as the input to the next layer
creates a deep NN (DNN)

n z =
n

∑
i=1

wixi

y = f(z) = f (
n

∑
i=1

wixi)

Figure from: Vieira, Sandra & Pinaya, Walter & Mechelli, Andrea. (2017). Using deep learning to
investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and

applications. Neuroscience & Biobehavioral Reviews. 74. 10.1016/j.neubiorev.2017.01.002.

multi-layer NN mathematical form
1. Notice that the weighted summation for neuron can be seen as a dot product:

2. When stacking neurons vertically the layer outputs can be seen as a matrix multiplication: 

3. Now the activation function is applied independently to each output: 

4. Thus we can write a DNN mathematically as function composition: 

j

zj =
n

∑
i=1

wixi = wT
j x

z1 = wT
1 x

z2 = wT
2 x

⋮ ⋮
zn = wT

n x

y1 = f(z1)
y2 = f(z2)
⋮ ⋮
yn = f(zn)

DNN(x) = f(W(3) f(W(2) f(W(1)x)

Layer 1

)

Layer 2

)

Output layer

 , or equivalently

z(1) = W(1)x
y(1) = f(z(1))
z(2) = W(2)y(1)

y(2) = f(z(2))
z(3) = W(3)y(2)

y(3) = f(z(3))

Alternating
between linear
transformation
and non-linear

activation
functions

, which can be written as z =

wT
1

wT
2

⋮
wT

n

x = Wx

, which can be written as y =

f(z1)
f(z2)

⋮
f(zn)

= f(z)

example of non-linear decision boundary

• Consider XOR classification function (clearly
not a linear decision boundary)

• We will use simple 2 layer NN: 
 

• Solution: 

h = ReLU(Wx + c) = max{0,Wx + c}
y = wTh

W = [1 1
1 1], c = [0

−1], w = [1
−2]

https://www.deeplearningbook.org/contents/mlp.html

https://www.deeplearningbook.org/contents/mlp.html

architecture and parameters of NN
• Depth: # of layers

• Width: # of neurons per layer

• Activations: sigmoid, ReLU, tanh, etc.

Depth

Width 1

Width 2

neural network architectures
• A plethora of neural network architectures have been

proposed, for different applications

• Multi-layer Perceptron (MLP): Cascading perceptrons

• Recurrent Neural Networks (RNN): Sequential data
modeling

• Convolutional Neural Networks (CNN): Image
recognition

• Long Short Term Memory (LSTM): Memory cells with
“forgetting” factors

• Transformer (most recent), Gated Recurrent Units
(GRU), Hopfield Networks, Boltzmann Machines,
Generative Adversarial Networks (GAN), …

learning neural networks
• (Batch) Gradient descent (GD) can be computationally expensive for large datasets (e.g, 1M images)

• Every update requires computing and summing gradients 

• If we add a normalizing constant of , we can view this update as taking the expected gradient
over all data samples: 

• Stochastic gradient descent (SGD) massively reduces the computational complexity by only using 1
sample at each time step , : 
 

• Note that the variance of the steps is much higher but the cost is much lower

• Sometimes called amortized learning because it amortizes (spreads out) the computational cost
across many iterations

• Mini-batch gradient descent is actually used in practice where often 64, 128 or 256 samples are
used in each batch (bridging between SGD and GD)

106

w(t+1) = w(t) − α∑n=106

i=1 ∇F(xi, yi, w(t))

1/n

w(t+1) = w(t) − α 1
n ∑n

i=1 ∇F(xi, yi, w(t)) = w(t) − α𝔼[∇F(xi, yi, w(t))]

t (xt, yt)

w(t+1) = w(t) − α𝔼[∇F(xi, yi, w(t))] = w(t) − α∇F(xt, yt, w(t))

Gradient descent

Stochastic Gradient Descent

SGD for a sigmoidal neuron
• Letting be the label of datapoint , be the vector of weights, and

 be the datapoint vector, define the error of the output of a
specific input:

• For SGD, we only need the partial derivative for one specific input 
 

• Remember that when is a sigmoid

yi i w = (w1, w2, . . .)
xi = (xi1, xi2, . . .) E(xi)

E(xi) =
1
2 (yi − f(sum))2 =

1
2 (yi − f(wTxi))2

∂E(xi)
∂wj

=
∂E(xi)

∂f(sum)
⋅

∂f(sum)
∂sum

⋅
∂sum
∂wj

= − (yi − f(sum)) ⋅ f(sum)(1 − f(sum))

Denote as δ0 since same for every wj

⋅ xij

∂f(x)
∂x = f(x)(1 − f(x)) f

SGD for a sigmoidal neuron
• From previous slide: 

 

• Thus, our SGD update rule becomes: 
 

 
 

• Importantly, is reused for every , so we only have to compute it once for each

∂E(xi)
∂wj

=
∂E(xi)

∂f(sum)
⋅

∂f(sum)
∂sum

⋅
∂sum
∂wj

= − (yi − f(sum)) ⋅ f(sum)(1 − f(sum))

Denote as δ0 since same for every wj

⋅ xij

w(t+1)
j = w(t)

j + α ⋅ δ0 ⋅ xij

w(t+1) = w(t) + α ⋅ δ0 ⋅ xi

δ0 wj t

∑
j

wjxij

xi1

xi2

w1

w2 f ∑
j

wjxij yi

learning complex separators
• So far we have only used one neuron

(logistic regression)

• Let’s build up to more complex models by
cascading neurons

• “Running” the classifier is the same as
before

• Pass weighted sum of inputs through
activation function, that output
becomes the input to the next neuron

• This is the inference stage

• The training stage of learning the weights
is a little trickier, but not by much!

x1

x2

learning complex separators
• Learning the weights of the edges to the output neuron is easy — same as

learning for a single neuron

• But what about the weights on the inputs to the hidden layer?

x1

x2

updating the deltas
• Consider the network below. The output of this hidden layer is a vector . We can write the error of the network as:

• The change in output error with respect to is:

h

E(w) =
1
2

(yi − f(w1h1 + w2h2 + w3h3))2 =
1
2

(yi − f(w1 f(w1,1x1 + w2,1x2) + w2h2 + w3h3))2

w1,1

∂E
∂w1,1

=
∂E
∂h1

⋅
∂h1

∂sumh1

⋅
∂ sumh1

∂w1,1
= − δ0w1 ⋅ f′ (sumh1) ⋅ x1 = − δh1

⋅ x1

x1

x2

h1
w1

w1,1

w2,1

h2

h3 δ0 = − (yi − f(wTh)) ⋅ f(wTh)(1 − f(wTh))

h1 = f(w1,1x1 + w2,1x2) = f(sumh1
)

w2

w3

this term has the
same form as

what we derived for
a single neuron previously

essence of backpropagation
• Computing the gradient for each neuron gives

us the delta (,…) for the “upstream”
neurons, so we can keep pushing error back

• This gives us the essence of
backpropagation for training neural networks

• Forward pass: Compute outputs of each
neuron

• Backward pass: Push errors (deltas,
,…) weighted by edges to compute

how the weights change.

• Update: Apply stochastic gradient descent
to each weight. Repeat.

δ0, δh1

δ0, δh1

x1

x2

h1
W1

W1,1

W2,1

W2

W3

h2

h3

automatic differentiation
• In the past, the gradients for every model were computed by hand

• Recently, everyone has started to use automatic differentiation

• Actually, the idea has been around for a long time (and our own Prof.
Jeffrey Siskind worked on this many years ago)

• Only recently popularized in the software packages TensorFlow (Google)
and PyTorch (Facebook)

• Importantly, this enables model definition and learning algorithm to be
decoupled

• Define your model however you want, just like writing a program, then use
automatic differentiation to automatically learn the model

implementing neural networks
• sklearn now has a built in MLP module:

from	sklearn.neural_network	import	MLPClassifier	

mlp	=	MLPClassifier(hidden_layer_sizes=(13,13,13),max_iter=500)	

• For more complex neural networks, we typically leverage other machine
learning libraries/platforms:

• pytorch (https://pytorch.org/)

• tensorflow (https://www.tensorflow.org/)

• Both have Python interfaces

https://pytorch.org/
https://www.tensorflow.org/

deep learning training
• With deep learning, we have non-linear

(and non-convex) error functions

• Therefore SGD is not guaranteed to
converge to the global optimum solution

• A lot of research is devoted to …

• Speeding up backpropagation, with
methods like the Adam optimizer, or
by distributing training across many
nodes

• Finding conditions for global solutions
in neural networks

