ECE 20875
Python for Data Science

Chris Brinton and David Inouye

filters, map/reduce, and
higher order functions

higher order functions

® Since functions are treated as first- ® return one or more functions

class objects in Python, they can ... def add two nums(x, y):
return x + vy

® take one or more functions as
def add three nums(x, y, z):
al‘guments return X + y + z

def summation(nums): def get appr‘opr‘late(num len):
return sum(nums) if num len ==

return add three nums
def main(f, args) else:
result = f(args) return add_two_nums

print(result) .
e filter,map,and reduce are

if __name__ == “__main__": examples of built-in higher order
main(summation, [1,2,3]) functions

liIst comprehension

® Slmple way of creating a list based on an ® Can also have an if-else clause on the
iterable Python object output expression
® Elements in the new list are conditionally Loutput expression for
. item 1n 1terable
included and transformed as needed]
loutput expression for item in iterable ® Can use line breaks between brackets
J for readability
® An example: numbers = [1, 2, 3, 4, 5, 6, 18, 20]
squares = |
numbers = [1, 2, 3, 4, 5] "small” if number < 10 else "big"
squares = [n**2 for n in numbers if n > 2] for number in numbers
1t number 7% 2 ==
® Compared with a for loop if number % 3 == @]
® More computationally efficient ® Can also be nested

, 1=1[["3","4",'5"],['6",'8","10","12"]]
® But less flexible! 12 = [[float(y) for y in x] for x in 1]

filter

® Remove undesired results from a list ® The lambda function

® Needs two inputs: ® Anonymous, i.e., without a name

® (boolean) function to be carried out ® Formatted as

® |[terable (list) to be filtered lambda arguments: expression
1i = [5, 7, 22, 97, 54, 62, 77, 23,
73, 61] ® Can have any number of
final list = list(filter(lambda x: arguments but on|y onhe
(x%2 1= 0) , 1i)) .
print(final_list) expression
: g = lambda x, y: X + vy
B fitter | > print(g(5,6))
condition if condition

IS true

map

® Applies a function to all items inan e Can also map e.g., a list of

input list (i.e., defines a mapping) functions
® Needs two inputs: def multiply(x):
return (x*x)
® Function to apply def add(x):

return (Xx+x)
® [terable: A sequence, collection, or

, , funcs = [multiply, add]
iterator object

for i in range(5):

items = [1, 2, 3, 4, 5] value = list(map(lambda x:
squared = list(map(lambda x: x**2, x(1), fU”CS))
items)) print(value)

reduce

® Perform computation on a list and ® Can also define (non-anonymous)
return the (single value) result functions

def do sum(x1l, x2):

® Rolling computation applied to return x1 + x2

sequential pairs of values reduce(do_sum, 1i)
e Needs two inputs: ® Operator functions can also be
used

o :
Function to apply reduce(operator.add, 1i)

® Sequence to iterate over ® Need to import the relevant

1i = [5, 8, 10, 20, 50, 100] modules
sum = reduce((lambda x, y: X + vy), ,
1i) from functools import reduce

import operator

