
ECE 20875
Python for Data Science

Chris Brinton and David Inouye

filters, map/reduce, and
higher order functions

• Since functions are treated as first-
class objects in Python, they can …

• take one or more functions as
arguments
def	summation(nums):	
				return	sum(nums)	

def	main(f,	args)	
				result	=	f(args)	
				print(result)	

if	__name__	==	“__main__”:	
				main(summation,	[1,2,3])

higher order functions
• return one or more functions

def	add_two_nums(x,	y):	
				return	x	+	y	

def	add_three_nums(x,	y,	z):	
				return	x	+	y	+	z	

def	get_appropriate(num_len):	
				if	num_len	==	3:	
									return	add_three_nums	
				else:	
									return	add_two_nums	

• filter, map, and reduce are
examples of built-in higher order
functions

• Simple way of creating a list based on an
iterable Python object

• Elements in the new list are conditionally
included and transformed as needed
[output	expression	for	item	in	iterable	if	
condition]	

• An example:
					numbers	=	[1,	2,	3,	4,	5]	
					squares	=	[n**2	for	n	in	numbers	if	n	>	2]	

• Compared with a for loop

• More computationally efficient

• But less flexible!

list comprehension
• Can also have an if-else clause on the

output expression
[output	expression	if-else	clause	for	
item	in	iterable	condition(s)	on	
iterable]	

• Can use line breaks between brackets
for readability

						numbers	=	[1,	2,	3,	4,	5,	6,	18,	20]	
						squares	=	[
									"small"	if	number	<	10	else	"big"		
									for	number	in	numbers	
									if	number	%	2	==	0	
									if	number	%	3	==	0]	

• Can also be nested
						l	=	[['3','4','5'],['6','8','10','12']]	
						l2	=	[[float(y)	for	y	in	x]	for	x	in	l]

• Remove undesired results from a list

• Needs two inputs:

• (boolean) function to be carried out

• Iterable (list) to be filtered
li	=	[5,	7,	22,	97,	54,	62,	77,	23,	
73,	61]	
final_list	=	list(filter(lambda	x:	
(x%2	!=	0)	,	li))	
print(final_list)

filter
• The lambda function

• Anonymous, i.e., without a name

• Formatted as
lambda	arguments:	expression

• Can have any number of
arguments but only one
expression
g	=	lambda	x,	y:	x	+	y	
print(g(5,6))

• Applies a function to all items in an
input list (i.e., defines a mapping)

• Needs two inputs:

• Function to apply

• Iterable: A sequence, collection, or
iterator object
items	=	[1,	2,	3,	4,	5]	
squared	=	list(map(lambda	x:	x**2,	
items))

map
• Can also map e.g., a list of

functions
def	multiply(x):	
				return	(x*x)	
def	add(x):	
				return	(x+x)	

funcs	=	[multiply,	add]	
for	i	in	range(5):	
				value	=	list(map(lambda	x:	
x(i),	funcs))	
				print(value)

• Perform computation on a list and
return the (single value) result

• Rolling computation applied to
sequential pairs of values

• Needs two inputs:

• Function to apply

• Sequence to iterate over
li	=	[5,	8,	10,	20,	50,	100]		
sum	=	reduce((lambda	x,	y:	x	+	y),	
li)	

reduce
• Can also define (non-anonymous)

functions
def	do_sum(x1,	x2):	

									return	x1	+	x2	
reduce(do_sum,	li)	

• Operator functions can also be
used
reduce(operator.add,	li)	

• Need to import the relevant
modules
from	functools	import	reduce	
import	operator

