ECE 20875
Python for Data Science

Chris Brinton and David Inouye

regular expressions

basic text processing

* Python lets you do a lot of simple text processing with strings:

s = “hello world”

s.count(“1”) #returns 3
s.endswith(“rld”) #returns True

“ell” 1n s #returns True

s.Tind(“ell”) #returns 1

s.replace(“o”, “0") #returns “hell0 world”
s.split(“ “) #returns [“hello”, ‘world”]

“XX“.join([“hello”, “world”]) #returns “helloXXworld”

See https://docs.python.org/3/library/stdtypes.html#string-methods for more

e But what if we want to do fancier processing? More complicated
substitutions or searches?

https://docs.python.org/3/library/stdtypes.html#string-methods

regular expressions

 Powerful tool to find/replace/count/capture patterns in strings: regular
expressions (regex)

e Can do very sophisticated text manipulation and text extraction

import re
s = "hello cool world see”

p = re.compile(r'((.)\2)(?=.\b)")

sl = p.sub(lambda match : match.group(1).upper(), s)
print(sl)

e Useful for data problems that require extracting data from a corpus

regular expressions (regex)

A means for defining regular languages

* A language is a set (possibly infinite) of strings 8 Demo * | @ HelloWorld
import re
o A String IS a seguence of characters drawn from list = ["guru99 get”, "guru99 give"”, "guru Selenium")
an alphabet for element in list:
Z = r‘e.match@"(g\m)\N(g\:w)”, element)
. 10 if z:
* A regular language is one class of languages: U e Print(z.groups())
: : -
those defined by regular expressions (ECE 369 g
: : : : &
and 468 go II’TtO more detalls, |nCIUd|ng What ,\ B Console * @ Terminal O Problems R PyUnit
<terminated> C\Guru99\Demo.py

other kinds of languages there are) M [Cquruso, get)
* Use: Find whether a string (or a substring) matches

a regex (more formally, whether a substring is in
the language)

regular expressions

* A single string Is a regular expression: “ece 208/75", “data science”
 Note: the empty string is also a valid regular expression
e All other regular expressions can be built up from three operations:
1. Concatenating two regular expressions: “ece 20875 data science”

2. A choice between two regular expressions: “(ece 20875) | (data
science)”

3. Repeating a regular expression 0 or more times “(ece)™”

building regular expressions

* A regular expression in Python is compiled:.

import re
p = re.compile(“ece (264]|20875|368)")

* This creates special code for matching a regular expression (ECE 369/468
discusses the machinery behind this)

* Can then look for the regular expression in other strings:

p.match(“ece 264") #returns a match object

p.match(“hello ece 20875") #returns None
p.search(“hello ece 368"”) #returns a match object

 match checks only at the beginning of the string, while search looks
throughout, and both only return the first occurrence

Inspecting a match object

We want to see what the match Is, so we can set it to a variable:
x=p.search(“hello ece 368")

If we print X, we will see the match object (more on objects later)
print(x) # Returns <re.Match object; span=(6, 13),
match="ece 368>

To see the actual match string, we use group():
X.group() # Returns “ece 368"

To see the index of the match, we use span():
X.span() # Returns (6,13)

extra syntax for regex

. #wildcard, matches any character (except newline)

d ’

~abc #matches ‘abc’ only at the start of the string

’

abc$ #matches ‘abc’ only at the end of the string

ATNG* (\ . \d*) 2 [\d*\"\dT)'s

d ’

a? #matches @ or one ‘a
ax #matches zero or more ‘a’s
a+ #matches one or more ‘a’s e
My chin maded a regexp!
[abc] #character class, matches ‘a’ or ‘b’ or ‘c’
[~abc] #matches any character except ‘a’ or ‘b’ or ‘c’
[a—z] #character class, matches any letter between ‘a’

d 4

and ‘z

extra syntax for regex

S
e \s #matches whitespace p

“hello 12 hi 89. Howdy 34"
re.compile(“\d+")

| result = p.findall(s)
e \S #matches non-whitespace print(result)

o #Output: ['12', '89', '34']
e \d #matches digit P
 \D #matches non-digit

e \w #matches any word character, which 1s alphanumeric
and the underscore (equivalent to [a-zA-Z0-9])

e \W #matches any non-word character

lookahead characters

\b : matches the empty string at . &eecerseta

1 — At symbol word boundary —
the beginning Or end Of a WOrd special alpha-num, _, upper or lower
r :] ' , Or dlash chlar ::: | alpha cll'uaracter | 1
\B : matches the empty string \b[\w.%+-]+@[\w.-]+\.[a-zA-Z]{2,6]}\b
: : =)
not at the beginning or end of a enveehamumeric char. | | the {xy) modiier means

match previous [...]

WO rd pattern at least one time

must have 2-6 characters

(?=abc) : matches if “abc” is what comes next
(?1abc) : matches if “abc” is not what comes next

These are zero-width assertions: They don’t cause the engine to advance
through the string, and they are not part of the resulting match

Other regex examples: https://www.pythonsheets.com/notes/python-rexp.html

https://www.pythonsheets.com/notes/python-rexp.html

groups

 (Can use parentheses to capture groups

Pl Demo P] HelloWorld

* Groups together characters (like in math): (abc)”
means repeat abc, but abc™ means repeat c

2 1import re
4 list = ["guru99 get", "guru99 give"”, "guru Selenium"]
6 for element in list:

* Groups are captured by regular expressions 2 = re.match("(g\w+) \W(g\ws)", element)

if z:
11 - print(z.groups())

- match.group(k) returns the contents of the .=~

kth grOup In the matChed teXt ,, & Console * | @ Terminal O Problems Fu PyUnit
\ <terminated> C:\Guru99\Demo.py
| \l(:gurugg:,\:ggt'\? p)
e Group 0 is always the whole matched regex LEuTR, e

e match.groups() returns all subgroups in a
list

Group O

g rO u pS (({rat Jbat)cat Jdog

'W :

' Group 3

L N

* Groups can be nested — count " Group 2

based on number of left parentheses —
Group 1

e Groups can be named:

re.compile(“(?P<foo>abc)”) x = “dog = (?P<pet>\w+), cat

(?P=pet)”

* Can refer to groups within a regular

i Ty = "random_text dog =
expression (or a substitution): Y — g

sammy, cat = sammy"

« \k refers to the content of the kth z = re.compile(x).search(y)

group print(z.group(“pet”))

#prints sammy
« (?P=foo0) refers to the content of

the group named fo00

substitution

 There is also a replacement command sub ()
e p.sub(a,b) rewrites b with any match to p replaced by a
* For example, we can generate the following regex, with groups:
e p = re.compile(r’hello (\wx)’) #match “hello ..”

* Note that prefixing a string with r’ makes it a raw string literal that tells Python not to
process it (useful when trying to match characters like “\n”)

* We can write the following replacements, using the groups if we want:
e p.sub(r’goodbye \1’, ‘well hello ece’) #returns ‘well goodbye ece’

e p.sub(r’\1 goodbye \1’, ‘well hello X') #return ‘well X goodbye X’

