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Abstract—We propose new models for the spread of Ebola-
type epidemics, considering networks both within and between
countries. By modifying the traditional SIR model to capture
the effects within each specific country, our Spatial SI(D/S)
model overlays geographic information in the form of a graph
topology to model the spread of diseases across boarders. In
fitting the models to real-world data from the 2014-16 West
Africa Ebola outbreak, we find that each is able to obtain low
error in predicting infections over time, and that the use of spatial
information can provide at least marginal improvements. We also
show how our model parameters offer more insights into how
these types of diseases are spread than does the SIR model, and
propose an optimization problem for epidemic response strategies
on a fixed budget that makes use of these parameters.

I. INTRODUCTION

Epidemics have repeatedly shown an ability to explode in
infected density if not properly contained, and have reaped
massive consequences on populations in the process. The
2014-16 Ebola outbreak, for example, is estimated to have cost
$4.55 Billion for Liberia, Sierra Leone and Guinea combined,
slowing trade and plunging these countries into recessions in
the process. It also closed schools in these countries for several
months and led to more than 11,000 deaths [1].

The economic, political, and human costs of epidemics,
coupled with limited funds of many countries to address them,
motivates research in the development of models for the spread
of diseases through populations. Such models can in turn
be used to derive methods for preemptively combating the
diseases. In particular, if the network of disease spread through
communities can be properly estimated, then the people with
the most influence (i.e., ability to infect others) could be the
initial targets for cure or immunization [2], [3].

In this paper, we take a network-based approach to mod-
eling Ebola-type epidemics, considering the spread of disease
between geographic regions. We also formalize how one can
respond to an epidemic using the parameters of our model.

A. Related Work

Research on epidemic modeling can be roughly divided into
three categories: collection of data on outbreaks, modeling
from data, and implementation of models. Work in collect-
ing data generally relies on either (i) scraping information
from health center and containment effort databases, or (ii)
crowdsourcing methods, such as encouraging people to fill
out surveys/questionnaires and/or to report cases [4]–[6].

As for modeling outbreaks, the famous three-compartment
Susceptible-Infected-Recovered (SIR) model traces back to
M’Kendrick’s seminal 1925 paper [7]. In this model, suscep-
tible individuals may become infected, and may eventually
recover from the disease. Several extensions of this model
have been proposed over the years, such as adding fourth
susceptible (e.g., SIRS) or exposed (e.g., SEIR) compartments
[8], using spatial data to account for the proximity of spread
[3], and using population-dependent rates for the transitions
between different species [9]. Many of these enhancements
are motivated by properties of specific diseases like dengue
fever [3] and influenza [4]. Our work can be viewed as an
extension of the SIR model to account for factors specific to
epidemics like Ebola, including (i) the possibility of becoming
re-susceptible in addition to dying, and (ii) a spatial model for
geographic spread on top of the baseline epidemic graph.

Research on the implementation of models has looked at
the design of preemptive methods for minimizing epidemics.
These include analyzing the effect of containment methods and
immunization strategies, e.g., [10] [11]. Models have also been
applied to analyze the efficacy of past policies, particularly for
HIV prevention [12]. Motivated by this, we also propose an
epidemic response strategy based on our model.

B. Organization and Contributions

In this work, we develop and evaluate new models for
Ebola-type epidemics. We begin in Sec. II by formulating
three models from a networking perspective. After deriving
the traditional SIR model, we turn that into our SI(D/S) model
which more closely reflects the dynamics of Ebola where
individuals in a country can become infected multiple times.
We then extend this into our Spatial (Graph-Based) SI(D/S)
model, which overlays a digraph of infection rates between
countries. Following this, in Sec. III we perform an evaluation
of these models in terms of their ability to fit real-world data
from an Ebola outbreak in three West African countries, in
which we find that each obtains low error overall. We finally
further motivate the parameters of our Spatial SI(D/S) model
in Sec. IV by using them to develop an optimization problem
for an epidemic response strategy.

II. EPIDEMIC MODEL FORMULATION

In this section, we formalize our two network-based epi-
demic models. We first discuss preliminaries of the SIR
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model (Sec. II-A). We then build upon those in deriving our
SI(D/S) (Sec. II-B) and Spatial SI(D/S) (Sec. II-C) models.
The notation we use throughout is summarized in Table I.

A. SIR as a Graphical Model

In contrast to initial work [7] that introduced the SIR model
using state transitions, we instead view the problem from a
network perspective. In particular, we seek to represent the
population of possible infected individuals as a network.
Epidemic graph. Formally, define the complete edge weighted
digraph GP = (V,E), where Vi 2 V represents the vertex i
and the weight of edge Ei,j 2 E represents the strength of the
connection from vertex i to vertex j. In our case, each i is a
person, and the weight of Ei,j , say wi,j , measures how likely
i is to infect j if i is already infected, i.e., the probability of
i infecting j is proportional to wi,j .

Note that defining exact formulas for Ei,j and wi,j is
elusive, since in reality it is a complex mix of factors such
as proximity, frequency of physical contact, cleanliness, and
so forth. We will instead optimize the weight values wi,j in
Section III to fit the dataset of the modeled epidemic.
Temporal model. We seek a temporal, discrete-time model for
epidemics. In doing so, we let Vi(t) denote the compartment
(i.e., state) of vertex i at time t, either susceptible (S) or
infected (I) for now. S(t) and I(t) are accordingly the sets of
vertices that have not and have been infected at time t. The
third state recovered (R) will be added into the model shortly.

Viewing wi,j as the probability that i infects j in a given
interval of time �, we assume that each infected will infect
others independently and that on average wi,j < 1/|I(t)| 8i, j.
With this, we have the following equation for the probability
that a person will get infected in a time interval:

P (Vj(t) 2 I(t)|Vj(t) 2 S(t��))

=

|V |X

i=1

wi,j {Vi(t��) 2 I(t��)}

where {·} is the indicator function and t � � is the index
for the previous time period.

Now, a sick person in I(t) will eventually either die or
get better. This adds a third state for recovered vertices R(t)
at time t. A recovered vertex cannot be infected; technically
speaking this state corresponds to the immune or deceased.
To model the transition from I to R, we let h(t) denote a
time-varying function of the likelihood that an infected vertex
recovers after time t spent infected. Formally, with ti denoting
the time at which vertex i is infected, we have

P (Vj(t) 2 R(t)|Vj(t) 2 I(t��)) = h(t��� ti)

Deriving the traditional SIR model. We now derive the
traditional, population-based SIR model from ours to aid in
simulations. First, we find the average edge weight, say ��

and assign each edge wi,j to that weight. With uniform edge
weights, we can rewrite our probability of infection as

P (Vj(t) 2 I(t)| · · · ) =
|V |X

i=0

�� {Vi(t��) 2 I(t��)}

TABLE I
TABLE OF NOTATION USED IN THE PAPER.

Term Description

V Set of all vertices.
V c Set of all cliques in the spatial model.
E Set of all edges.
Ec Set of all edges between cliques.
Vi(t) State of the ith vertex at time t.
Ei,j The edge between vertices i and j.
wi,j The weight of edge Ei,j .
� Size of time step.

S(t) Susceptible set at time t. Sj(t) for clique j.
I(t) Infected set at time t. Ij(t) for clique j.
R(t) Recovered set at time t.
D(t) Dead set at time t. Dj(t) for clique j.
h(t) Probability of transitioning from I to R at time t.
ti Time at which vertex i gets infected
ta Time at which the combating action occurred.
�� Discrete time model average edge weight.
↵� Discrete time model rate of recovery/death.
� Continuous model rate of infection.
↵ Continuous model rate of recovery/death.

�c
i,j Rate of infection from clique i to j.
↵c
i Rate of recovery/death in clique i.
✏ RMSE error metric.
c̄T Total resources.
c̄ Given set of resources.

��i,j Change in �i,j .
�↵i Change in ↵i.
f↵(x) Function that maps �↵,i values to ĉ vectors.
f�(x) Function that maps ��,i,j values to ĉ vectors.

Since |I(t)| people are going to be sick at a given time t, we
can simplify this further:

P (Vj(t) 2 I(t)|Vj(t) 2 S(t��)) = |I(t��)| · ��

Now, note that the number of people who can be infected
at any given time is the number of susceptible people. As a
result, the expected number of people who are infected in one
time step is

E [|S(t��)|� |S(t)|] = |S(t��)| · |I(t��)| · ��

To arrive at the traditional SIR model, we must further simplify
the process of moving from state I to state R by assuming
that h(t) is uniform over all times, i.e., h(t) = ↵�. Thus,

↵� = P (Vj(t) 2 R(t)|Vj(t) 2 I(t��))

We can see then quantify the expected number of people that
recover in one timestep as

E [|R(t)|� |R(t��)|] = |I(t��)|↵�

Finally, we must make the functions continuous. As we
take lim�!0, the number of “chances” to infect approaches
to infinity, but the strength of each chance will technically
approach 0. Adjusting ↵ and � to reflect this by specifying
lim�!0 ↵� = ↵ and lim�!0 �� = �, we have that

lim
�!0

E [|S(t��)|� |S(t)|] = dS

dt
= �|S(t)||I(t)|�

lim
�!0

E [|R(t)|� |R(t��)|] = dR

dt
= |I(t)|↵
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Fig. 1. High-level block diagram of the traditional SIR model.

Fig. 2. Simulation of the SIR model. The sizes of S(t), I(t), and R(t) are
shown over time t with sliders for r0 = |S|/↵ and � that show the value
r0 and � are set at to return generate these results. ↵ and � are the rates of
recovery and infection respectively.

These equations correspond exactly to those of the population-
based SIR model, with the additional state I(t) = �S(t) �
R(t):

dI

dt
= |S(t)||I(t)|� � |I(t)|↵

Model intuition. Overall, the SIR model splits the population
into three groups: susceptible (S), infected (I), and recovered
(R), with the flow between states summarized in Figure 1.
A susceptible person can be infected by someone currently
infected, and an infected person will eventually recover, either
becoming immune or deceased. A person in the recovered
category remains recovered and does not interact with the other
categories. We give an example simulation of the SIR model
for fixed values of ↵ and � in Figure 2.

B. The SI(D/S) Ebola Model

We now modify the population-based SIR model to fit the
dynamics of Ebola and Ebola-type diseases. We take two
factors into consideration:
(1) Non-immunity. First, it is possible for a person to catch
Ebola twice, i.e., surviving infection does not make a person
immune [4]. This implies that an infected person in I(t) can
become susceptible again S(t) or recover, but in this case,
recovery implies death. We presume that the dead are buried
or quarantined from the rest of the population and thus cannot
infect or be infected. As a result, we replace R(t) with a
compartment D(t), and add a transition between I(t) and S(t).
(2) Mortality rate. Second, studies have revealed that the
probability of someone dying once contracting Ebola is 71%
[13]. Therefore, for those exiting the I category, we assign a
transition rate of 0.71 to the D category and a rate of 0.29 to
re-entering the S category.

Fig. 3. High-level block diagram of the SI(D/S) Ebola model.

Fig. 4. Simulation of the SI(D/S) Ebola Model. The sizes of S(t), I(t),
and D(t) are shown over time t, with sliders for ↵ and � the rates of
recovery/death and infection respectively.

The modified population growth rate equations are thus:
dS

dt
= �|S(t)||I(t)|� + 0.29|I(t)|↵

dI

dt
= |S(t)||I(t)|� � |I(t)|↵

dD

dt
= 0.71|I(t)|↵

We denote this model as the SI(D/S) Ebola model, which we
summarize in Figure 3. Figure 4 gives an example simulation
of this model for fixed values of ↵ and �.

C. The Spatial SI(D/S) Ebola Model

Like the SIR model, the SI(D/S) Ebola model assumes that
each person in the population is connected with equal strength
and all recover identically fast. In reality, the connection
strengths wi,j and the speed of recovery/death will vary person
to person. Estimating these parameters individually is clearly
intractable, however, without detailed information on each
person’s contact network within the population of interest.

On the other hand, we can expect strong variations in
parameters to exist between different regions. Since datasets
on Ebola split cases by country, such variations can be incor-
porated by allowing for country-specific ↵ and � parameters.
Model overview. This model defines parallel and interdepen-
dent SI(D/S) models for each country. In doing so, it splits
the larger population into distinct but dependent populations,
and models the spread of epidemic both within a country and
between countries. For example, Liberia will have an SI(D/S)
Ebola model for itself, but people in this country will have
additional avenues of contracting Ebola from other countries.
Model intuition. Each country has its own unique health care
policy, level of development, infrastructure, and so forth that
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Fig. 5. Visualization of the two-layered network hierarchy of the Spatial
SI(D/S) Ebola Model. This has four countries and four people in the second.

intuitively will lead to similar ↵ and � values for those living
within a country, but different values across countries. There
are exceptions to this, such as international travelers who have
more frequent contact with those in other countries, but as we
are interested in population dynamics we may assume these
internal variations will be absorbed by everyone in the country
equally. Returning to our graph-based intuitions for epidemic
modeling, we can say that people are organized into similarly-
connected cliques based on their country, and different cliques
(countries) are in turn connected in a higher-level graph. We
can allow all edges between a vertex in clique x and a vertex
in clique y to take the weight of the edge connecting clique x
and y, while within a clique, we can assume that all vertices
are connected with uniform weights. The networks within a
country can function like the SI(D/S) Ebola model, with ↵
and � unique to the given country. This two-layered network
structure is visualized in Figure 5 for the case of four countries.
Model formulation. To formalize this model, define the
complete weighted digraph Gc = (V c, Ec) where vertex
V c
i 2 V c represents a clique/country of vertices. Each edge

Ec
i,j 2 Ec represents infection probability of individuals from

country i to country j. The weight of edge Ec
i,j corresponds

the the magnitude of the � value between all people from
country i to j. We define the |V c| by |V c| matrix �c to contain
these weights, i.e., �c

i,j is the value of � from i to j. By this
specification, �c

i,i corresponds to the � value internal to i, i.e.,
the infection rate between people within the country.

Different from �, the recovery rate parameter ↵ is not
defined between cliques. We define the length |V c| vector ↵c

to contain these values for each clique, with ↵c
i being that for

country i. Now, denoting the set of susceptible, infected and
dead vertices in clique i as Si, Ii and Di, respectively, our
system of differential equations becomes

dSj(t)

dt
= 0.29↵c

jIi(t) +

|V c|X

i=1

�
��c

i,jIi(t)Sj(t)
�

dIj(t)

dt
= �↵c

jIi(t) +

|V c|X

i=1

�
�c
i,jIi(t)Sj(t)

�

Fig. 6. High-level block diagram of the Spatial SI(D/S) Ebola model, with
the interdependencies of model states shown for two countries.

Fig. 7. Simulation of the Spatial SI(D/S) Ebola model over time for 10
countries. The S, I and D model states are shown as totals across all countries.

dDj(t)

dt
= 0.71↵c

jIi(t)

We call this model the Spatial (Graph-Based) SI(D/S) Ebola
model. The interdependencies between model states are de-
picted in Figure 6 for the case of two countries. Figure 7 gives
an example simulation of this model, plotting the aggregate S,
I and D across countries.

III. MODEL EVALUATION

We now compare the proposed SI(D/S) models with the
SIR model in terms of their abilities to fit a real-world Ebola
outbreak in different countries. We describe our dataset (Sec.
III-A) and implementation (Sec. III-B) before presenting and
discussing the results (Sec. III-C).

A. Dataset

We obtained our dataset from the open source Humanitarian
Data Exchange [13]. It consisted of 17,585 entries, with each
entry giving the cumulative number of Ebola cases (either
confirmed, probable, or suspected) for a country on a particular
date recorded. There are 259 distinct dates over the course
of two years, from 2014 to 2016, in roughly uniform 3-day
increments. A total of 12 different countries across Europe,
Africa, and small portions of North America appear in the
dataset. However, only three of them reported enough cases
to be effectively modeled: Guinea, Liberia, and Sierra Leone.

The format of the data was already quite close to the output
function I(t) of our models, so we did not have to perform
substantial transformations prior to evaluation. In particular, by
making I(t) cumulative and down-sampling it to the number
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TABLE II
BEST FIT PARAMETERS AND ✏ ERROR METRICS OBTAINED FOR EACH

COUNTRY AND MODEL. BOTH THE SI(D/S) AND SPATIAL SI(D/S)
MODELS MAKE MARGINAL IMPROVEMENTS OVER THE SIR MODEL.

Country Model ↵ � Error (✏)
SIR 0.0057347 4.4870⇥ 10�10 0.044131

Guinea SI(D/S) 0.0057313 4.4845⇥ 10�10 0.044143
Spatial 0.0057384 See Table III 0.043784

SIR 0.0262572 5.7840⇥ 10�9 0.087516
Liberia SI(D/S) 0.0263041 5.7923⇥ 10�9 0.087320

Spatial 0.0261867 See Table III 0.087340
SIR 0.024466 3.4113⇥ 10�9 0.070857

Sierra Leone SI(D/S) 0.0244759 3.4128⇥ 10�9 0.070731
Spatial 0.0244659 See Table III 0.070615

TABLE III
TUNED �c MATRIX FOR THE SPATIAL SI(D/S) MODEL.

1: Guinea 2: Liberia 3: Sierra Leone
1 4.484⇥ 10�10 4.825⇥ 10�15 6.251⇥ 10�15

2 6.933⇥ 10�12 5.766⇥ 10�9 3.037⇥ 10�12

3 2.149⇥ 10�13 2.745⇥ 10�14 3.411⇥ 10�9

of data points in the original data set, we were able to develop
an error metric (described next) that compares our model
prediction of I(t) with the data of these three countries.1

B. Parameter Selection and Error Metric

Each model has parameters that we can adjust to fit the
data. The SIR and SI(D/S) models both have two for each
country – ↵ and � – while the Graph-Based SI(D/S) model
has N(N + 1) parameters – ↵c

i and �c
i,j – where N is the

number of countries.
Error metric. To select these parameters, we look to minimize
the following root mean squared error metric:

✏ =

r
Ptf

t=0

⇣
Î(t)� I(t)

⌘2
/tf

Ptf
t=0 I(t)/tf

where Î(t) and I(t) are the cumulative numbers of infected
cases from the model and the data, respectively, and tf is the
number of time periods. Though the infected category itself
does not fully encapsulate all model states, it is tied to both
the S and D categories such that over time, we can expect that
incorrect predictions in these other categories will be reflected.

For each model, we discretize time into tf = 10, 000 steps.
Given that the dataset spans around 2 years, this gives a time
step � in the range of 1-2 hours. We found that the models
generally performed better with shorter values of �, and that
10, 000 was a reasonable tradeoff between model error and
computational complexity.
Tuning SIR and SI(D/S). To tune the SIR and SI(D/S)
models, we perform a grid-search procedure similar to [14].
In particular, for each country, we successively refine a point
(↵k,�k) over iterations k. In each iteration, we pixelate 100
values over a decreasing range and choose the pair with the

1Our code for scraping and parsing the data can be found at https://github.
com/jmrico01/ele-381 under file get data.py.

Fig. 8. Plot of the three models over time in predicting the cumulative number
of infected, compared with the empirical data. Each model tends to overshoot
initially and undershoot later, which could be used in early detection.

lowest ✏. We repeat until the decrease in error between two
iterations is negligible.
Tuning Spatial SI(D/S). With three countries, the Spatial
SI(D/S) model has 12 parameters, making a grid search
procedure computationally intractable. As a result, to tune
this model, we start with the optimized parameters from the
SI(D/S) model for each country, with cross terms set to zero:

↵c
i = ↵SI(D/S)

i �c
i,i = �SI(D/S)

i �c
i,j = 0 i 6= j

Naturally, this results in the same error values for each country
as the SI(D/S) model, which we can then use as a baseline
to improve upon. With these initial values in place, we begin
spreading each �c

i,i randomly along its row, ensuring at each
step that each row always sums to the original �SI(D/S)

i , i.e.,
using �SI(D/S)

i as a benchmark for the total magnitude of
infection spread. More formally, in each step k we set each
(�c

i,j)
k to a uniformly-selected random fraction of the (�c

i,i)
k

in the same row, and subtract these from (�c
i,i)

k such thatPN
j=0(�

c
i,j)

k = �SI(D/S)
i . We repeated this until we obtained

an error value close to the original SI(D/S) model, but with
non-zero cross terms �c

i,j . Next, we repeatedly selected a
parameter, any ↵c

i or �c
i,j , and adjusted it by a uniformly-

selected random fraction of its value. We repeated this process
until the difference in the sum of the errors across countries
between two iterations was negligible.2

C. Results and Discussion

Tables II and III give the best fit parameters identified for
each model by country, and the corresponding model errors ✏.
Figure 8 compares the cumulative values of I(t) over time in
each of the cases. Overall, we see that each model obtains a
rather close fit to the actual data, and that both the SI(D/S)
and Spatial SI(D/S) models make improvements over the SIR
model, albeit marginally.

More specifically, the average errors over all countries
for SIR, SI(D/S), and Spatial SI(D/S) are 6.750%, 6.740%,
and 6.725%, respectively. The incremental improvements are

2The code to simulate and optimize each model can be found at https:
//github.com/jmrico01/ele-381, under files models.py, optimize single.py, and
optimize spatial.py.
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small, but the SI(D/S) and Spatial SI(D/S) models have the
added improvements of interpretability. In particular, they both
can be expected to give ↵ and � parameters that are more
well-tuned to the real world, since they employ an empirically
measured death rate. The Spatial SI(D/S) provides the richest
information: the �c

i,j values provide insights into how quickly
the disease spreads within and between countries while ↵c

i

values give information on the death or recovery rates by
country. For example, the fact that �c

2,1 is three orders of
magnitude larger than �c

1,2 in Table III indicates that Ebola
spread from Liberia to Guinea may be more prevalent than
from Guinea to Liberia, which is also consistent with Liberia
having substantially higher internal ↵c

i values in Table II. Such
information can be of utility to Ebola prevention measures.

Note also in Figure 8 that each model tends to overshoot
initially and undershoot later on. A closer fit is always more
ideal, but note that this characteristic can actually be useful
for early detection of the spread of the disease.

IV. EPIDEMIC RESPONSE STRATEGY

To further motivate the development of the Spatial SI(D/S)
Ebola model, we now briefly propose a framework for using
the results of this model in resource allocation strategies for
epidemic response. We define the success metric for such a
strategy to be the number of people that die after the strategy
is implemented; denoting this value as �, we have

� = lim
t!1

|Vc|X

j=1

(|Dj(t)|� |Dj(ta)|)

where ta is the time at which the combating action is im-
plemented and Dj(t) is the cumulative number of deceased
predicted by the spatial model in country j at time t, given
conditions after ta. The objective is to minimize �.

Now, actions taken against the epidemic are subject to
resource constraints, which could be monetary, policy, or
other in nature. Assume that these costs types are mutually
independent and that there are M types. The resources used
are then represented with a vector x̄ of length M , where each
entry corresponds to the amount of one resource. We also let
x̄T denote the vector of total resources available, i.e., x̄  x̄T .

Next, we assume that using a certain vector of resources x̄
corresponds to a change in a given ↵c

i or �c
i,j value by some

�↵i or ��i,j respectively. Formally, we define |V c| ! M

and |V c|2 ! M functions f↵(x) and f�(x) as the mapping
of �↵i and ��i,j to x̄ cost vectors. These functions can be
defined and estimated for a particular set of countries and
costs. This gives the following optimization problem at the
current time tc:

minimize � = lim
n!1

|Vc|X

j=1

|Dj(n)|� |Dj(tc)|

subject to
|Vc|X

i=1

|Vc|X

j=1

f�(��i,j) +

|Vc|X

i=1

f↵(�↵i)  x̄T

variables ��i,j 2 ,�↵i 2 , 8i, j 2 V c

The result of this optimization is a set of ��?
i,j and �?↵i, i.e.,

the changes that correspond to the optimal response strategy.

V. CONCLUSION AND FUTURE WORK

In this paper, we developed three models for the spread
of Ebola-type epidemics from a network perspective: the
traditional SIR, the SI(D/R), and the Spatial SI(D/R). In
evaluating their abilities to fit real-world data of Ebola in three
countries, we found average errors of 6.750%, 6.740%, and
6.725% respectively, which are small overall and show a trend
of improvement. Importantly, the SI(D/R) and Spatial SI(D/R)
models have learnt parameters that give insights into the spread
of the disease. We motivated these parameters further in using
those based on the Spatial SI(D/S) model in the proposal of
an epidemic response resource allocation strategy.

In future work, we aim to (i) derive a more general param-
eter optimization procedure for the Spatial SI(D/S) model, (ii)
fit the epidemic response strategy to specific cases, and (iii)
test the generalizability of our models to other epidemics.
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