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Abstract—Federated learning has received significant attention
as a potential solution for distributing machine learning (ML)
model training through edge networks. This work addresses an
important consideration of federated learning at the network
edge: communication delays between the edge nodes and the
aggregator. A technique called FedDelAvg (federated delayed
averaging) is developed, which generalizes the standard federated
averaging algorithm to incorporate a weighting between the
current local model and the delayed global model received at
each device during the synchronization step. Through theoretical
analysis, an upper bound is derived on the global model loss
achieved by FedDelAvg, which reveals a strong dependency
of learning performance on the values of the weighting and
learning rate. Experimental results on a popular ML task indicate
significant improvements in terms of convergence speed when
optimizing the weighting scheme to account for delays.

Index Terms—Federated learning, edge intelligence, distributed
machine learning, convergence analysis, edge-cloud computing

I. INTRODUCTION

Rapid developments of communications technology in con-
junction with machine learning (ML) algorithms has resulted
in an exponential rise in data generated by user devices [1].
A paradigm shift is occurring from the conventional cloud
computing architecture to a hybrid cloud-edge model where
ML data processing is carried out on edge devices for many
applications, particularly latency-sensitive tasks [2].

Federated learning (FL) has emerged as a promising so-
lution for distributing the training of ML models across edge
devices. FL techniques, such as the popular FedAvg algorithm
[3], generally consist of three steps repeated in sequence:
(i) several iterations of parallel, local model training at each
device using their own local datasets, (ii) aggregation of the
local models at an edge server into a single, global model, and
(iii) synchronization of the local models at each device with
this global model.

Several research efforts have been conducted on federated
learning in recent years to address challenges such as reducing
communication overhead and analyzing convergence rates. In
this paper, we consider another important aspect of FL that
arises in edge networks: communication delays between the
edge devices and server performing the aggregations. Our
proposed algorithm, FedDelAvg, serves the dual purpose of
quantifying the impact of such delays and optimizing model
performance in their presence.

1) Related work: We divide related work on federated
learning into two categories: studies on (i) reducing com-
munication bandwidth requirements and (ii) obtaining model

convergence bounds. For a recent, comprehensive survey of
works on FL, see [4].
Reducing communication requirements. Edge networks can
have unreliable communication environments (e.g., variable
wireless connections), which can impact distributed ML tech-
niques. For this reason, [3], [5] proposed methods to re-
duce the number of upstream and downstream communica-
tion rounds required in FL. Other efforts have focused on
reducing communication demand per round; in particular,
[6]–[8] proposed gradient compression methods to reduce
the bandwidth required in each transmission. Recently, [9]
proposed a network-aware FL architecture which trades off
communication demand with model convergence.
Model convergence bounds. Other work on FL has studied
model convergence under different data distributions and local
update models. [10] showed that the error bound of FL in
the case of non-Independent and Identically Distributed (non-
i.i.d.) data samples becomes worse than i.i.d., while [11]
analyzed the convergence of the FedAvg algorithm, suggest-
ing conditions on the learning rate to achieve the optimum.
[12] discovered that training may converge faster with batch
gradient descent, assuming that all edge devices participate
throughout the training process. Most recently, [13] analyzed
the convergence bound of FL in the presence of a total network
resource budget constraint.

The above-mentioned works do not consider the effect of
network delays. In practice, delays between the edge devices
and the cloud are non negligible – usually from hundreds
of milliseconds to several seconds depending on the network
bandwidth [6] – which might severely degrade the perfor-
mance of FL schemes. This aspect is the focus of our work.

2) Outline of contributions: We propose FedDelAvg, a
novel technique that adapts FL in the presence of network
delays. Specifically, we develop a new algorithm for the
synchronization step that combines local and global models
to account for the effects of delay (Section II). Then, we
characterize convergence of FedDelAvg and provide sug-
gestions for the optimal weight used in the synchronization
phase (Section III). Finally, the delay-robustness of FedDelAvg
on convergence speed is demonstrated numerically when the
synchronization weighting is adjusted for delay (Section IV).

II. FedDelAvg: FEDERATED DELAYED AVERAGING

In this section, we introduce the federated learning sys-
tem model, the machine learning task model, and develop



Fig. 1: System architecture of FedDelAvg. Model
synchronization combines global and local models to account

for communication delays.

FedDelAvg, our federated delayed averaging algorithm.

A. Edge Network Model
The federated learning (FL) system architecture consists

of a single edge server and multiple edge devices indexed
by i = 1, 2, ..., N , as shown in Fig.1. The edge devices
collect data and perform local updates to optimize a loss
function F (·) corresponding to a machine learning task (de-
scribed next). The edge server (the cloud) plays the role of
an aggregator, collecting the locally trained parameters wi

and the corresponding local loss functions Fi(wi) from the
edge devices to perform a global update. Local updates are
taken to be gradient descent steps on the local loss functions
Fi(w), while global updates refers to aggregation followed
by synchronization. Aggregation denotes the computation of
a global model obtained using the weighted average of local
models, while synchronization represents the update of local
models at the edge after aggregation [9].

In an edge network, the aggregation of the local model
parameters at the cloud followed by the synchronization at
the edge incurs communication delay, which we aim to model
in our formulation.

B. Machine Learning Model
1) Data structure: Each device i carries a dataset Di with

Di = |Di| data points. Each data point (x, y) ∈ Di consists of
an m-dimensional feature vector x ∈ Rm and a label y ∈ R.

2) Loss function: We let fi(x, y;w) be the loss associated
with the data point (x, y) ∈ Di based on a model parameter
vector w. For instance, in linear regression, the loss function
is the squared error fi(x, y;w) = 1

2 (y − wTx)2. We define
the loss function across the local dataset Di as

Fi(w) =
1

Di

∑
(x,y)∈Di

fi(x, y;w), (1)

and the global loss function across all nodes can then be
expressed as

F (w) =

N∑
i=1

ρiFi(w), (2)

where ρi = Di/
∑
j Dj is the weight associated with the ith

node, proportional to the size of the local dataset.
3) Learning objective: The goal of the machine learning

task is to find the w∗ that minimizes F (w), i.e.,

w∗ = arg min
w

F (w). (3)

To aid our analysis in Section III, we make a few standard
assumptions [3] on the local loss functions Fi.

Assumption 1. Fi(w) is continuously differentiable, convex,
L-Lipschitz and β-smooth, implying that

|Fi(w1)− Fi(w2)| ≤ L‖w1 −w2‖, (4)
‖∇Fi(w1)−∇Fi(w2)‖ ≤ β‖w1 −w2‖, (5)

where L ∈ [0,∞) and β ∈ [0,∞) are the Lipschitz and
smoothness constants, respectively.

By (2), Assumption 1 holds for the global loss function
F (w) too. One example of Fi(w) that satisfies Assumption 1
is the well-known logistic regression loss.

We now state an important assumption on the dissimilarity
of data at the edge devices, in addition to Assumption 1:

Assumption 2. The gradients of the local and global loss
functions exhibit a similarity of

‖∇Fi(w)−∇F (w)‖ ≤ δi, ∀w, (6)

where 2L ≥ δi ≥ 0 is the dissimilarity parameter for node i.

We let δ =
∑
i ρiδi be the average data dissimilarity across

the edge network.
4) Centralized gradient descent: Loss functions are typ-

ically minimized by gradient descent (GD) iterations. In a
centralized case, where the global loss F can be optimized
directly, this is defined as

wGD(t) = wGD(t− 1)− η∇F (wGD(t− 1)), (7)

where wGD(0) is an initialization, t ≥ 1 is the iteration index,
and η > 0 is the learning rate. If F is convex and η ≤ 1

β , then
gradient descent converges to the globally optimal solution w∗

with rate O(1/T ), where T is the number of iterations [14].
However, centralized gradient descent cannot be directly

applied to the FL framework in Fig.1 since no device has
direct access to all the data. In addition, communication
to the cloud is costly in terms of network resources, so
the aggregation and synchronization processes are done only
periodically. Finally, communication delay between edge and
cloud is usually non-negligible, which we address next in
developing the FedDelAvg algorithm.

C. FedDelAvg Algorithm

In FedDelAvg, i.e., Federated Delayed Averaging, the
effect of communication delay between edge and cloud on
learning performance is incorporated into the design of the
FL system. We divide the learning process into discrete time
intervals t ∈ {1, 2, ..., T}, where the duration between two
consecutive aggregations is denoted as τ . The communication



delay between the time when edge devices send their updates
to the cloud and the resulting synchronization is denoted ∆,
where τ ≥ ∆ ≥ 0. In Fig.1, we assume a symmetric delay of
τ/2 upstream and downstream.

1) Distributed gradient descent incorporating delay: We let
wi(t) be the local model parameter vector of edge device i at
time t, initialized as wi(−∆) = w(−∆) at time −∆ across
all devices. Let

w(t) =
∑
i

ρiwi(t) (8)

be the weighted average of the parameter vectors across the
edge devices at t. w(t) is computed at the cloud at times
t ∈ {kτ −∆,∀k ≥ 0} as a result of aggregation, and is then
received at the edge devices at time t+∆. We partition the time
interval (−∆, T − ∆] of duration T into K = T/τ periods,
each of duration τ (without loss of generality, we assume T
is an integer multiple of τ ).

Consider the kth period, k ∈ {0, . . . ,K − 1}, spanning the
time interval Tk = {kτ−∆+1, ..., (k+1)τ−∆}. At each time
t ∈ Tk \ {kτ}, each edge device performs local GD updates
as

wi(t) = wi(t− 1)− η∇Fi(wi(t− 1)). (9)

At time t = kτ (synchronization), each edge device receives
the delayed global parameter vector w(t−∆) from the cloud.
To update the local model, each device first performs a local
GD update, followed by a weighted average between the local
and global variables; mathematically, at time t = kτ ,

wi(t) =αw(t−∆)

+ (1− α) [wi(t− 1)− η∇Fi(wi(t− 1))] , (10)

where α ∈ [0, 1] is a weight parameter weighting the local vs.
global updates. Note that, when α = 1 and ∆ = 0, we obtain
[3] as a special case. Letting

αt =

{
α, t = kτ,∃k ∈ {0, 1, . . . ,K − 1}
0, otherwise

, (11)

we can then define the updates at all times t ∈ {−∆+1, ..., T−
∆} as

wi(t) =αt
∑
j

ρjwj(t−∆)

+ (1− αt) [wi(t− 1)− η∇Fi(wi(t− 1))] . (12)

Since edge devices send their local parameters wi(t) and
the corresponding local loss functions Fi(wi(t)) to the cloud
at t = kτ −∆, the cloud only has access to the global model
w(t) and F (w(t)) at times t = kτ − ∆. Then, the final
model parameter chosen from FedDelAvg, after K global
aggregations, is

wK = arg min
w∈W

F (w), (13)

where W ≡ {w(kτ −∆), k = 0, 1, . . . ,K − 1}.
The full FedDelAvg algorithm is summarized in Alg.1.

Algorithm 1: Federated Delayed Averaging
Input: αt, τ,N, T
Output: wK

Initialize wi(−∆), ∀i;
for k = 0 : K − 1 do

for t = kτ −∆ + 1 : (k + 1)τ −∆ do
if t = (k + 1)τ −∆ then

Each edge device i send local parameters wi

and Fi(wi) to the cloud;
else if t = (k + 1)τ −∆/2 then

Compute w((k + 1)τ −∆) with (8) and send it
to the edge for synchronization;

Update wK with (13);
else

For each edge device i ∈ 1, 2, ..., N in parallel,
update local model with (12);

end
end

end

III. CONVERGENCE ANALYSIS OF FedDelAvg

In this section, we study the convergence of FedDelAvg
in terms of the optimality gap F (wK)− F (w∗) between the
global objective function at the algorithm output wK and at
the globally optimal parameter vector w∗.

Definition 1. For each period k ∈ {0, . . . ,K−1}, as in [13],
we define ck(t) as the centralized gradient descent algorithm
during the time interval t ∈ Tk, i.e.,

ck(t) = ck(t− 1)− η∇F (ck(t− 1)), (14)

initialized as ck(kτ −∆) = w(kτ −∆).

A. Optimality Gap and Optimization

The main result is demonstrated in Theorem 1, which upper
bounds the optimality gap under delay.

Theorem 1. Under Assumption 1 and with η < 2
β ,

F (wK)− F (w∗) (15)

≤ 1

2ηφT
+

√
1

4η2φ2T 2
+
LΨ(α)

ηφT
+ Lψ(α,K), (16)

where

Ψ(α) ,
K∑
k=1

ψ(α, k) = Kψ(α,∞) (17)

− [(1 + ηβ)τ − 1]
(1− α)2

α
ε(K),

ψ(α, k) , (1− α)ε(k)[(1 + ηβ)τ − 1] (18)

+ (1− α)h(τ) + αh(τ −∆) + αη∆L(1 + ηβ)τ−∆,

h(x) ,
δ

β
[(1 + ηβ)x − 1]− ηδx, (19)

ε(k) , [1− (1− α)k]2ηL(τ/α−∆). (20)

We discuss the proof of Theorem 1 in Section III-B.
Theorem 1 demonstrates that the performance of FedDelAvg
under communication delay is strongly dependent on the



learning rate η and on the value of the weighting α used
in the synchronization phase, indicating that these algorithm
parameters should be carefully selected with respect to the
communication delay in a given learning environment. One
way to design α and η is to minimize the asymptotic optimality
gap, achieved in the limit T →∞. In this case, we obtain

lim
K→∞

F (wK)− F (w∗) ≤

√
L

ηφτ

√
ψ(α,∞) + Lψ(α,∞),

(21)

where

ψ(α,∞) = (1− α)2ηL(τ/α−∆)[(1 + ηβ)τ − 1] (22)

+ (1− α)h(τ) + αh(τ −∆) + αη∆L(1 + ηβ)τ−∆.

Note that (21) is increasing in ψ(α,∞). Therefore, the optimal
value of α to the minimizer of ψ(α,∞) in (22). When the
delay is negligible (∆ = 0), we obtain

ψ(α,∞) = h(τ) + (α−1 − 1)2ηLτ [(1 + ηβ)τ − 1] (23)
≥ ψ(1,∞),

and therefore the asymptotic optimality gap in (21) is mini-
mized by choosing α = 1. In this case, we obtain the FedAvg
algorithm derived in [13, Theorem 2] as a special case of our
analysis. Intuitively, α = 1 is the optimum for this special case
because the global model obtained by the cloud at t = kτ is
built based on the weighted average of up-to-date local models.

Our analysis generalizes that in [13, Theorem 2] by incor-
porating communication delay, and by allowing α ∈ (0, 1] in
the synchronization phase. In this case, the term ψ(α,∞) is
an increasing function of α ∈ (0, 1] iff

α2
{
η∆L[2(1 + ηβ)τ + (1 + ηβ)τ−∆ − 2]

− δ

β
(1 + ηβ)τ−∆[(1 + ηβ)∆ − 1] + ηδ∆

}
≥ 2ηLτ [(1 + ηβ)τ − 1].

Note that, if

δ ≥ ηβL∆(1 + ηβ)τ−∆ − 2[(1 + ηβ)τ − 1](τ −∆)

(1 + ηβ)τ − (1 + ηβ)τ−∆ − ηβ∆

then ψ(α,∞) is a decreasing function of α, minimized at
α = 1. This result demonstrates that as data dissimilarity δ
among various edge device larger than a certain threshold,
the global parameters across the overall federated system
dominates the learning performance such that α = 1 becomes
the optimum. The large dissimilarity reduces the importance
of any particular local model since it becomes harder for any
of them to truly reflect the characteristics of the overall data.
Only by gathering different local models across the network
can the learning system form a representative whole for all data
participated in the training. Otherwise, the optimal α ∈ (0, 1]
is

α =

√√√√√ 2ηLτ [(1 + ηβ)τ − 1][
η∆L[2(1 + ηβ)τ + (1 + ηβ)τ−∆ − 2]
− δ
β (1 + ηβ)τ−∆[(1 + ηβ)∆ − 1] + ηδ∆

] .

In Theorem 1, notice that F (wK) does not converge to the
optimum as T increases to infinity. This is due to the fact that
the model parameters obtained by FedDelAvg with any fixed
learning rate η will converge to a sub-optimal point. Reference
[11] proved that the decay of learning rate in each training
iteration is necessary for FedAvg to converge even when
assuming the loss function to be strongly convex and smooth.
We leave the algorithm design and convergence analysis for
this more general case for future work.

B. Proof of Theorem 1

In order to prove Theorem 1, we introduce several properties
of FedDelAvg through supporting lemmas and propositions.
The detailed proofs are provided in [15].

Lemma 3. Under Assumption 1, with η < 2
β , we have

‖wi(kτ −∆)−w(kτ −∆)‖ ≤ ε(k) (24)

for all k ∈ 1, 2, ...,K, where

ε(k) = [1− (1− α)k]2ηL(τ/α−∆). (25)

Lemma 3 bounds the error between the local model wi(t)
and the global w(t) by ε(k) at time t = kτ −∆ for all k. It
can be observed that the difference between wi(t) and w(t),
depending on α, increases as the training process continues.
However, the rate of increase in this difference continues to
decrease until ε(k) converges.

This proof is consistent with our intuition that all of local
models should all converge to a similar point as training con-
tinues. Notice that if there is no global aggregation throughout
the training process (α = 0), the bound diverges. Since each
device only has access to its own data, this agrees with
our intuition that the local model parameters would diverge
due to data dissimilarity between the devices as the training
continues.

Lemma 4. Under Assumption 1, with η < 2
β , we have, for

t ∈ Tk \ {kτ},

‖wi(t)− ck(t)‖ ≤ (1 + ηβ)‖wi(t− 1)− ck(t− 1)‖+ ηδi.

Since ck(t) is equivalent to w(t) at t = kτ − ∆ by
definition, Lemma 4 quantifies the divergence between the
local model parameter wi(t) and the auxiliary centralized
GD model parameter ck(t) at time t in terms of ε(k) from
Lemma 3. It can be observed that the difference between local
model wi((k+ 1)τ −∆) and global model w((k+ 1)τ −∆)
induces an exponential growth on the bound, dominated by the
effects of ε(k) and the dissimilarity of data distributions among
different edge devices δi with respect to t. This exponentially
growing term disappears when the communication delay is not
considered due to the fact that wi(t) = ck(t) at time t = kτ
for all k. In this case, the bound becomes

‖wi(t)− ck(t)‖ ≤δi
β

(
(βη + 1)t−kτ − 1

)
, (26)

which is the same as derived in [13, Lemma 3].



Lemma 5. Under Assumption 1 with η < 2
β , we have

‖w(kτ)− ck(kτ)‖ ≤ η∆
[
αL+ (1− α)βε(k)

]
(27)

+ (1− α)

(
β

δ
ε(k) + 1

)
h(∆) (28)

= α∆Lη + (1− α)
[
((1 + ηβ)∆ − 1)ε(k) + h(∆)

]
. (29)

Lemma 5 shows the effect of global aggregation on the
gap between w(kτ) and ck(kτ). The gap is dominated by
two factors ∆Lη and ((1 + ηβ)∆ − 1)ε(k) + h(∆), which
characterize the influence from the global model and the local
model, respectively. Notice that when communication delay is
not considered (i.e., α = 1,∆ = 0), ‖w(kτ) − ck(kτ)‖ ≤ 0
at t = kτ . This can be expected since global aggregation
is performed at time t = kτ for all k such that we have
w(kτ −∆) = ck(kτ −∆) by definition.

Proposition 1. Under Assumption 1 and η < 2/β, we have

‖w((k + 1)τ −∆)− ck((k + 1)τ −∆)‖ (30)

≤ ψ(α, k) , (1− α)ε(k){[1 + ηβ]τ − 1}
+ (1− α)h(τ) + αh(τ −∆) + αη∆L[1 + ηβ]τ−∆,

such that

‖F (w((k + 1)τ −∆))− F (ck((k + 1)τ −∆))‖ ≤ Lψ(α, k).

Proposition 1 quantifies the upper bound on the divergence
between the global model parameter w(t) and the auxiliary
parameter ck(t) at t = (k + 1)τ −∆.

When the communication delay is negligible (∆ = 0) and
α = 1, we see that ψ(α, k) converges to

‖w((k + 1)τ)− ck((k + 1)τ)‖ ≤ δ

β

(
(βη + 1)τ − 1

)
− ηδτ,

which is consistent with the result derived in [13, Theorem 1],
showing that FedDelAvg and FedAvg are equivalent when
α = 1 with no delay.

When the communication delay is non-negligible (∆ > 0)
and α ≤ 1, ψ(α, k) shifts from (i) ε(k){[1 + ηβ]τ − 1}+h(τ)
to (ii) η∆L[1 + ηβ]τ−∆ + h(τ − ∆) as α goes from 0 to
1. Since factors (i) and (ii) are dominated by α and 1 − α
respectively, they correspond to the degree of influence the
global and local models have on the bound respectively. We
analyze the characteristics of the bound under two cases: α =
1 and α < 1. When α = 1, the bound remains fixed at t = (k+
1)τ−∆ for all k since the local models are synchronized to the
same value after global aggregation. When α < 1, the bound
does not remain the same for all time t = (k + 1)τ −∆ as k
increases since the local models are synchronized to different
values after global aggregation. From Proposition 1, it can be
observed that the alteration of the bound is characterized by
ε(k). Therefore, similar to Lemma 3, the bound increases in
the beginning while the rate of increase continues to decrease
as the training process continues until it converges.

In [15], these results are combined together to prove Theo-
rem 1 as follows. We first bound the error between the local

and global model by ε(k) at every initialization point of ck(t)
using Lemma 3. Since ck(t) = w(t) at the initialization points
t = kτ −∆, we can then bound the divergence between the
local model wi(t) and ck(t) for t ∈ {kτ − ∆, ..., kτ − 1}
by combining ε(k) with the recursive relationship in Lemma
4. Considering the synchronization phase of FedDelAvg,
we further bound the divergence between the global model
w(t) and ck(t) at t = kτ using results in Lemma 4.
Finally, applying Lemma 5, we quantify the upper bound on
the divergence between the global model w(t) and ck(t) at
t = (k+1)τ−∆ in Proposition 1. Combining the upper bound
obtained in Proposition 1 with the convergence property of
ck(t) them completes the proof of Theorem 1.

IV. EXPERIMENTAL EVALUATION

To verify our theoretical results, we conduct numerical
experiments to examine the effect of communication delay
on the convergence of federated learning. The simulation is
carried out using the TensorFlow Federated (TFF) framework
[16]. Considering the fact that cloud would only have access
to the global model at t = kτ − ∆ for all k when the
delay between edge and cloud are carefully considered, we
evaluate the averaged model ∆ iterations before each global
synchronization on the corresponding global loss function.

We consider a federated learning system with N = 10 edge
devices. The number of local update steps between two global
aggregations is set to τ = 10, communication delay is set to
∆ = 9, and the total number of global aggregation steps is set
to K = 100.
Dataset. The MNIST dataset [17] containing 70K images
(60K for training and 10K for testing) of hand-written digits is
considered in the simulation. We distribute the dataset among
the edge devices in a manner such that each obtains a subset
corresponding to a specific writer. Since each writer has an
unique writing style, the data exhibits dissimilarity (δ > 0)
among devices (data dissimilarity is referred to as ”non-iid”
in the literature, see [4]).
ML model. We consider a generic multinominal logistic
regression machine learning model to predict the label of each
image out of s = 10 possible classes. The cross-entropy loss

fi(x, y;w) = −
s∑
j=1

{y = j} log ew
T
j x
( s∑
l=1

ew
T
l x
)−1

, which

satisfies Assumptions 1 and 2, is applied as the loss function
at each edge device. During the local updating process, each
edge device performs gradient descent with full batch size and
a fixed learning rate η = 0.02.

We study the effects of the two key parameters – the
weighting α which we control, and the communication delay
∆ which is an artifact of the system – on Federated Delayed
Average Learning. The convergence of the testing accuracy,
defined as the fraction of classes predicted correctly relative
to the total number of predictions, is demonstrated with respect
to different values of α and ∆.

Fig.2 depicts the improvement in testing accuracy by ag-
gregation for different values of α. The convergence speed
varies with respect to different values of α. Compared with



Fig. 2: Accuracy w.r.t different α, for a fixed ∆ = 9.
Selection of α strongly affects rate at which accuracy

converges.

FedAvg (α = 1), FedDelAvg gains the best improvement
with α = 0.2: the model reaches an accuracy of roughly 80%
in 78% fewer training iterations.

Observing the best selection of α in Fig.2, we set α = 0.2
and compare FedDelAvg with FedAvg when delay is either
negligible or non-negligible (∆ = 0 and ∆ = 9) in terms of
accuracy. As shown in Fig. 3, when communication delay be-
tween edge and cloud is negligible (∆ = 0), FedAvg obtains
the best performance in terms of convergence rate, verifying
our conclusion in Theorem 1 that α = 1 is the optimum
when ∆ = 0. To further demonstrate the delay robustness of
FedDelAvg, we set the performance of FedAvg with no de-
lay (∆ = 0) as benchmark and compare it with FedDelAvg
under delay (∆ = 9) when α is optimized. We observe
that, even when the delay is non-negligible, FedDelAvg
achieves an accuracy of 80% while only requiring 10% extra
training iterations compared with the benchmark. After 100
aggregations, FedDelAvg achieves an accuracy within 3%
of the benchmark, whereas FedAvg has a severely degraded
performance, thus demonstrating the delay-robustness of the
proposed algorithm.

V. CONCLUSION

This paper proposed FedDelAvg, a generalized federated
averaging algorithm that incorporates communication delay
in edge networks. Analysis of the convergence bound of
FedDelAvg was conducted with respect to dissimilarities of
local data at each device. The experimental results demon-
strated the impact of delays on federated learning and the
delay-robustness of FedDelAvg. Overall, we found that the
global model converges significantly faster when the synchro-
nization weighting is optimized for the delay compared with
existing FL algorithms where local models are not considered
during synchronization.

Fig. 3: Accuracy w.r.t different communication delays.
FedDelAvg under delay is able to obtain a similar

convergence rate to the case of no delay when α is tuned.
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APPENDIX A

A. Proof of Lemma 1

Lemma 1. Under any F satisfying Assumption 1, we have

‖[w1−η∇F (w1)]−[w2−η∇F (w2)]‖ ≤
√

1 + β2η2‖w1−w2‖

≤ (1 + βη)‖w1 −w2‖.

Proof. Note that, from the convexity of F , it follows that

F (w2) ≥ F (w1) + (w2 −w1)T∇F (w1) (31)

F (w1) ≥ F (w2) + (w1 −w2)T∇F (w2). (32)

Summing both inequalities, we obtain

(w2 −w1)T (∇F (w2)−∇F (w1) ≥ 0.

Then,

‖[w1 − η∇F (w1)]− [w2 − η∇F (w2)]‖2 (33)

= ‖w1 −w2‖2 + η2‖∇F (w1)−∇F (w2)‖2 (34)
− 2[w2 −w1][∇F (w2)− η∇F (w1)] (35)

≤ (1 + β2η2)‖w1 −w2‖2, (36)

where the last inequality follows from the fact that F is β-
smooth. The result of the lemma thus follows.

B. Proof of Lemma 2

Lemma 2. Under Assumption 1,

‖∇Fi(w)‖ ≤ L, ∀i,∀w. (37)

Proof. Note that convex and L-Lipschitz conditions imply,
∀w′,w,

〈w′ −w,∇Fi(w)〉 ≤Fi(w′)− Fi(w) (38)
Fi(w

′)− Fi(w) ≤L‖w′ −w‖ (39)

Let w′ = w −∇Fi(w), then we prove that

‖∇F (w)‖ ≤ L. (40)

C. Proof of Lemma 3

Lemma 3. Under Assumption 1, with learning rate η < 2
β ,

we have

‖wi(kτ −∆)−w(kτ −∆)‖ ≤ ε(k)
i (41)

for all k ∈ {0, 1, . . . ,K}, where

ε(k) = [1− (1− α)k]2ηL(τ/α−∆). (42)

Proof. From (9), we find that kτ < t < (k + 1)τ

wi((k + 1)τ −∆) =wi(kτ)− η
τ−∆∑
r=1

∇Fi(wi((k + 1)τ −∆− r));

(43)

moreover, from (10)

wi(kτ) = αw(kτ −∆) + (1− α)[wi(kτ − 1)− η∇Fi(wi(kτ − 1))]

= αw(kτ −∆) + (1− α)wi(kτ −∆)

− (1− α)η

∆∑
r=1

∇Fi(wi(kτ − r)); (44)

after combining, we obtain

wi((k + 1)τ −∆) = αw(kτ −∆) + (1− α)wi(kτ −∆)

− (1− α)η

∆∑
r=1

∇Fi(wi(kτ − r))

− η
τ−∆∑
r=1

∇Fi(wi((k + 1)τ −∆− r)). (45)

Therefore,

wi((k + 1)τ −∆)−w((k + 1)τ −∆)

= wi((k + 1)τ −∆)−
∑
j

ρjwj((k + 1)τ −∆)

= (1− α)[wi(kτ −∆)−w(kτ −∆)]

− (1− α)η(1− ρi)
∆∑
r=1

∇Fi(wi(kτ − r))

+ (1− α)η

∆∑
r=1

∑
j 6=i

ρj∇Fj(wj(kτ − r))

− η
τ−∆∑
r=1

(1− ρi)∇Fi(wi((k + 1)τ −∆− r))

+ η

τ−∆∑
r=1

∑
j 6=i

ρj∇Fi(wj((k + 1)τ −∆− r)). (46)

Computing the norm and using the triangular inequality, we
then obtain

‖wi((k + 1)τ −∆)−w((k + 1)τ −∆)‖
≤ (1− α)‖wi(kτ −∆)−w(kτ −∆)‖

+ (1− α)η(1− ρi)
∆∑
r=1

‖∇Fi(wi(kτ − r))‖

+ (1− α)η

∆∑
r=1

∑
j 6=i

ρj‖∇Fj(wj(kτ − r))‖

+ η

τ−∆∑
r=1

(1− ρi)‖∇Fi(wi((k + 1)τ −∆− r))‖

+ η

τ−∆∑
r=1

∑
j 6=i

ρj‖∇Fi(wj((k + 1)τ −∆− r))‖. (47)

Finally, using Lemma 2 we obtain

‖wi((k + 1)τ −∆)−w((k + 1)τ −∆)‖
≤ (1− α)‖wi(kτ −∆)−w(kτ −∆)‖
+ 2ηL(1− ρi)(τ − α∆). (48)



By induction, we then find

‖wi(kτ −∆)−w(kτ −∆)‖ ≤ (1− α)k‖wi(−∆)−w(−∆)‖
+ [1− (1− α)k]2ηL(τ/α−∆) , ε(k), (49)

and we obtain the desired result by initializing wi(−∆) =
w(−∆),∀i.

D. Proof of Lemma 4
Lemma 4. Under Assumption 1, with learning rate η < 2

β ,
we have, for t ∈ (kτ −∆, (k + 1)τ −∆), t 6= kτ ,

‖wi − ck(t)‖ ≤ (1 + ηβ)‖wi(t− 1)− ck(t− 1)‖+ ηδi.

Proof. Let t ∈ (kτ −∆, (k + 1)τ −∆), t 6= kτ . We have

wi − ck(t) = wi(t− 1)− ck(t− 1)

+ η[∇Fi(ck(t− 1))−∇Fi(wi(t− 1))]

+ η[∇F (ck(t− 1))−∇Fi(ck(t− 1))].

Taking the norm and using the triangular inequality, we then
obtain

‖wi − ck(t)‖ ≤ ‖wi(t− 1)− ck(t− 1)‖
+ η‖∇Fi(ck(t− 1))−∇Fi(wi(t− 1))‖
+ η‖∇F (ck(t− 1))−∇Fi(ck(t− 1))‖.

The result of the lemma is then found by using the β-
smoothness of Fi(·) and Assumption 2.

E. Proof of Lemma 5
Lemma 5. Under Assumption 1 with learning rate η < 2/β,
we have

‖w(kτ)− ck(kτ)‖ ≤ η∆
[
αL+ (1− α)βε(k)

]
(50)

+ (1− α)

(
β

δ
ε(k) + 1

)
h(∆). (51)

= α∆Lη + (1− α)
[
((1 + ηβ)∆ − 1)ε(k) + h(∆)

]
. (52)

Proof. Note that, using (44)

w(kτ) =
∑
i

ρiwi(kτ) (53)

= w(kτ −∆)− (1− α)η

∆∑
r=1

∑
i

ρi∇Fi(wi(kτ − r)).

(54)

Moreover,

ck(kτ) = ck(kτ −∆)− η
∆∑
r=1

∑
i

ρi∇Fi(ck(kτ − r)).

(55)

Therefore, we obtain

w(kτ)− ck(kτ) = ηα

∆∑
r=1

∑
i

ρi∇Fi(ck(kτ − r)) (56)

− (1− α)η

∆∑
r=1

∑
i

ρi[∇Fi(wi(kτ − r))−∇Fi(ck(kτ − r))]

(57)

where we used the fact that ck(kτ−∆) = w(kτ−∆). Taking
the norm and using the triangular inequality, we then obtain

‖w(kτ)− ck(kτ)‖ ≤ ηα
∆∑
r=1

∑
i

ρi‖∇Fi(ck(kτ − r))‖

(58)

+ (1− α)ηβ

∆∑
r=1

∑
i

ρi‖wi(kτ − r)− ck(kτ − r)‖. (59)

where we used the β-smoothness of Fi to further upper bound
‖∇Fi(wi(kτ − r))−∇Fi(ck(kτ − r))‖. Using Lemma 2 and
Lemma 4, we can further bound

‖w(kτ)− ck(kτ)‖ ≤ ηαL∆ + (1− α)ηβε(k)
∆∑
r=1

(1 + ηβ)∆−r

(60)

+
δ

β
(1− α)ηβ

∆∑
r=1

[(1 + ηβ)∆−r − 1], (61)

yielding the result in the lemma after algebraic steps.

F. Proof of Proposition 1

Proposition 1. Under Assumption 1 and learning rate η <
2/β, we have

‖w((k + 1)τ −∆)− ck((k + 1)τ −∆)‖ (62)

≤ ψ(α, k) , (1− α)ε(k){[1 + ηβ]τ − 1}
+ (1− α)h(τ) + αh(τ −∆)

+ αη∆L[1 + ηβ]τ−∆,

Proof. Let t ∈ (kτ − ∆, (k + 1)τ − ∆]. Then from (10) we
have

wi =αtw(kτ −∆) (63)
+ (1− αt) [wi(t− 1)− η∇Fi(wi(t− 1))] (64)

and

ck(t) =ck(t− 1)− η∇F (ck(t− 1)). (65)

Using the fact that

ck(kτ − 1) = w(kτ −∆)− η
∆−2∑
r=0

∇F (ck(kτ −∆ + r)),

it follows that

w(t)− ck(t) = (1− αt)[w(t− 1)− ck(t− 1)]

− (1− αt)η
∑
i

ρi[∇Fi(wi(t− 1))−∇Fi(ck(t− 1))]

+ ηαt

∆−1∑
r=0

∇F (ck(kτ −∆ + r))



Taking the norm, using the triangular inequality, β-smoothness
of Fi, and Lemma 2 to bound ‖∇F (ck(t))‖, we obtain the
inequality

‖w(t)− ck(t)‖
≤ (1− αt)‖w(t− 1)− ck(t− 1)‖

+ (1− αt)ηβ
∑
i

ρi‖wi(t− 1)− ck(t− 1)‖

+ αtηL∆.

By induction, we then obtain, for t ∈ [kτ − ∆, kτ) (αt = 0
for all such t)

‖w(t)− ck(t)‖ ≤ ηβ
t−1∑

`=kτ−∆

∑
i

ρi‖wi(`)− ck(`)‖,

where we used the fact that ck(kτ−∆) = w(kτ−∆), and for
t ∈ [kτ, (k+1)τ−∆] (note that αkτ = α and αt = 0,∀t > kτ )

‖w(t)− ck(t)‖

≤ (1− α)ηβ

kτ−1∑
`=kτ−∆

∑
i

ρi‖wi(`)− ck(`)‖,

+ ηβ

t−1∑
`=kτ

∑
i

ρi‖wi(`)− ck(`)‖+ αηL∆.

Therefore,

‖w((k + 1)τ −∆)− ck((k + 1)τ −∆)‖

≤ (1− α)ηβ

kτ−1∑
`=kτ−∆

∑
i

ρi‖wi(`)− ck(`)‖,

+ ηβ

(k+1)τ−∆−1∑
`=kτ

∑
i

ρi‖wi(`)− ck(`)‖+ αηL∆.

We now bound the term
∑
i ρi‖wi(`) − ck(`)‖. Note that∑

i ρi‖wi(kτ −∆) − ck(kτ −∆)‖ =
∑
i ρi‖wi(kτ −∆) −

w(kτ−∆)‖ ≤ ε(k) (Lemma 3). For ` ∈ (kτ−∆, (k+1)τ−∆]
we then have

wi(`)− ck(`) = (1− α`) [wi(`− 1)− ck(`− 1)]

− (1− α`)η [∇Fi(wi(`− 1))−∇Fi(ck(`− 1))]

− (1− α`)η [∇Fi(ck(`− 1))−∇F (ck(`− 1))]

+ α`η

∆−1∑
r=0

∇F (ck(kτ −∆ + r)).

Taking the norm, using the triangular inequality, Lemma 1, β-
smoothness of Fi, definition 2 and computing the sum

∑
i ρi,

we obtain the inequality∑
i

ρi‖wi(`)− ck(`)‖ (66)

≤ (1− α`)[1 + ηβ]
∑
i

ρi‖wi(`− 1)− ck(`− 1)‖ (67)

+ (1− α`)ηδ + α`η∆L (68)

Using induction, it then follows, for ` ∈ [kτ − ∆, kτ − 1]
(α` = 0)∑

i

ρi‖wi(`)− ck(`)‖ (69)

≤ [1 + ηβ]`−kτ+∆ε(k) + δ
[1 + ηβ]`−kτ+∆ − 1

β
, (70)

and for ` ∈ [kτ, (k + 1)τ −∆],∑
i

ρi‖wi(`)− ck(`)‖ (71)

≤ (1− α)[1 + ηβ]`−kτ+∆ε(k) (72)

+ (1− α)δ[1 + ηβ]`−kτ
[1 + ηβ]∆ − 1

β
(73)

+ δ
[1 + ηβ]`−kτ − 1

β
+ αη∆L[1 + ηβ]`−kτ . (74)

It then follows that
kτ−1∑

`=kτ−∆

∑
i

ρi‖wi(`)− ck(`)‖

≤ ε(k) [1 + ηβ]∆ − 1

ηβ
+
h(∆)

ηβ
,

and
(k+1)τ−∆−1∑

`=kτ

∑
i

ρi‖wi(`)− ck(`)‖ (75)

≤ (1− α)[1 + ηβ]∆ε(k) [1 + ηβ]τ−∆ − 1

ηβ
(76)

+ (1− α)
h(τ)− h(∆)

ηβ
+ α

h(τ −∆)

ηβ
(77)

+ α∆L
[1 + ηβ]τ−∆ − 1

β
(78)

Combining these bounds with (66), we finally obtain

‖w((k + 1)τ −∆)− ck((k + 1)τ −∆)‖ (79)

≤ (1− α)ε(k){[1 + ηβ]τ − 1}
+ (1− α)h(τ) + αh(τ −∆)

+ αη∆L[1 + ηβ]τ−∆,

thus proving the Lemma.

G. Proof of Proposition 2

Proposition 2. Let

ω =
1

maxk∈{0,...,K−1} ‖ck(kτ −∆)−w∗‖2

Under Assumption 1, and if the following conditions are
satisfied,

1) η < 2
β

2) Tηφ− LΨ(α)
ξ2 > 0

3) F (ck((k + 1)τ −∆))− F (w∗) ≥ ξ for all k
4) F (w((K + 1)τ −∆))− F (w∗) ≥ ξ



for some ξ > 0, the convergence upper bound of FedDelAvg
is

F (w((K + 1)τ −∆))− F (w∗) ≤ 1

Tηφ− LΨ(α)
ξ2

. (80)

(81)

where Ψ(α) =
K∑
k=1

ψ(α, k).

Proof. First, note that, if ω =∞, i.e., ck(kτ −∆) = w∗,∀k,
then w((K+1)τ−∆)) = c[K+1]((K+1)τ−∆) = w∗, hence
F (w((K+1)τ−∆)) = F (w∗). Now, let us consider the case
ω <∞. For every interval k and t ∈ [kτ−∆, (k+1)τ−∆], we
define the sub-optimality gap of the centralized GD scheme,

Γ[k](t) = F (ck(t))− F (w∗). (82)

Note that Γ[k](t) ≥ 0,∀k. Since w((K + 1)τ − ∆)) =
c[K+1]((K + 1)τ −∆), we want to prove that

Γ[K+1]((K + 1)τ −∆))−1 ≥ Tηφ− LΨ(α)

ξ2
, (83)

(trivially satisfied if Γ[K+1]((K+1)τ−∆)) = 0). To determine
this bound, note that [13, Lemma 6]

Γ[k](t+ 1)−1 − Γ[k](t)
−1 ≥

η
(

1− βη
2

)
‖ck(t)−w∗‖2

(84)

≥
η
(

1− βη
2

)
maxk ‖ck(t)−w∗‖2

= ηω
(

1− βη

2

)
= ηφ, (85)

and therefore

Γ[k]((k + 1)τ −∆)−1 − Γ[k](kτ −∆)−1 (86)

=

(k+1)τ−∆−1∑
t=kτ−∆

[
Γ[k](t+ 1)−1 − Γ[k](t)

−1
]

(87)

≥ τηφ. (88)

It follows that
K∑
k=1

[
Γ[k]((k + 1)τ −∆)−1 − Γ[k](kτ −∆)−1

]
(89)

= Γ[K+1]((K + 1)τ −∆))−1 − Γ[1](τ −∆)−1 (90)

−
K∑
k=1

[
Γ[k+1]((k + 1)τ −∆)−1 − Γ[k]((k + 1)τ −∆)−1

]
(91)

≥ Tηφ, (92)

where Kτ = T . Therefore, to prove (83), it is sufficient to
show that
K∑
k=1

[
Γ[k]((k + 1)τ −∆)−1 − Γ[k+1]((k + 1)τ −∆)−1

]
≤ LΨ(α)

ξ2
,

(93)

which we now prove. Note that, since Ψ(α) =
K∑
k=1

ψ(α, k), a

sufficient condition which implies (93) is

Γ[k+1]((k + 1)τ −∆)− Γ[k]((k + 1)τ −∆) (94)

≤ Lψ(α, k)

ξ2
Γ[k]((k + 1)τ −∆)Γ[k+1]((k + 1)τ −∆).

(95)

Note that, from conditions (3) and (4) of the proposition
statement,

Γ[k]((k + 1)τ −∆)) ≥ ξ, ∀k, (96)
Γ[K+1]((K + 1)τ −∆) ≥ ξ. (97)

Moreover, from (86) with k < K − 1,

Γ[k+1]((k + 1)τ −∆) ≥
Γ[k+1]((k + 2)τ −∆)

1− τηφΓ[k+1]((k + 2)τ −∆)
(98)

≥ Γ[k+1]((k + 2)τ −∆) ≥ ξ. (99)

Therefore, to prove (94), it is sufficient to show

Γ[k+1]((k + 1)τ −∆)− Γ[k]((k + 1)τ −∆) ≤ Lψ(α, k).
(100)

Indeed,

Γ[k+1]((k + 1)τ −∆)− Γ[k]((k + 1)τ −∆) (101)
= F (w((k + 1)τ −∆))− F (ck((k + 1)τ −∆)) (102)
≤ L‖w((k + 1)τ −∆)− ck((k + 1)τ −∆)‖, (103)

so that the result directly follows from Proposition 2. The
Proposition is thus proved.

H. Proof of Theorem 1

Theorem 1. If Fi(·) is convex, L-Lipschitz and β-smooth,
when η < 2

β ,

F (wK)− F (w∗) (104)

≤ 1

2ηφT
+

√
1

4η2φ2T 2
+
LΨ(α)

ηφT
+ Lψ(α,K). (105)

where Ψ(α) =
K∑
k=1

ψ(α, k).

Proof. To derive (35), consider η ≤ 1
β and let ξ∗ > 0 be

defined such that Tηφ− LΨ(α)
ξ∗2 > 0 and

ξ∗ =
1

Tηφ− LΨ(α)
ξ∗2

. (106)

Solving, we obtain

ξ∗ =
1

2ηφT
+

√
1

4η2φ2T 2
+
LΨ(α)

ηφT
(107)



(which indeed satisfies Tηφ − LΨ(α)
ξ∗2 > 0). Now, let ξ > ξ∗,

and assume that, under such ξ, the conditions of Proposition
2 are all satisfied. Then, it follows that

F (w((K + 1)τ −∆))− F (w∗) <
1

Tηφ− LΨ(α)
ξ2

≤ 1

Tηφ− LΨ(α)
ξ∗2

= ξ∗ < ξ.

(108)

In other words, this shows a contradiction with condition (4)
of Proposition 2. Therefore, at least one of the conditions of
Proposition cannot be satisfied, for any ξ > ξ∗. Conditions (1)
and (2) are clearly satisfied since η ≤ 1/β and

ξ > ξ∗ =
1

Tηφ− LΨ(α)
ξ∗2

> 0.

Therefore, either conditions (3) or (4) are violated, implying
that

min{F (w((K + 1)τ −∆)),min
k
F (ck((k + 1)τ −∆))} − F (w∗) ≤ ξ∗.

(109)

Using Proposition 1, we have that

F (w((k + 1)τ −∆)) ≤ F (ck((k + 1)τ −∆)) (110)
+ |F (w((k + 1)τ −∆))− F (ck((k + 1)τ −∆))| (111)
≤ F (ck((k + 1)τ −∆)) (112)
+ L‖w((k + 1)τ −∆)− ck((k + 1)τ −∆)‖ (113)
≤ F (ck((k + 1)τ −∆)) + Lψ(α, k) (114)
≤ F (ck((k + 1)τ −∆)) + Lψ(α,K), (115)

(ψ(α, k) is increasing in k) so that

min
k
F (ck((k+1)τ−∆)) ≥ min

k
{F (w((k+1)τ−∆))−Lψ(α,K), }

and (109) implies

min
k≤K
{F (w((k + 1)τ −∆))} − Lψ(α,K)− F (w∗) ≤ ξ∗.

(116)

The result of the theorem then directly follows.


