ECE 20875
Python for Data Science

Chris Brinton and Qiang Qiu

(Adapted from material developed by Profs. Milind Kulkarni,
Stanley Chan, Chris Brinton, David Inouye)

python basics

coding in python

® Standard Integrated Development Environments (IDEs)
® |DLE: Python’s own, basic IDE

® PyCharm: Code completion, unit tests, integration with
git, many advanced development features (https://
www.jetbrains.com/pycharm/)

® Many more!

® |upyter Notebook (https://jupyter.org/)

@& notebook.scholar.rcac.purdue.edu/user/cgb/notebooks/coding.ipynb

® Contains both computer code and rich text elements I ————— 8. comirws |

File Edit View Insert Cell Kernel Widgets Help

(paragraphs, figures, ...) [0 8 e v x 8o

® Supports several dozen programming languages
® Very useful for data science development! s o

® You can download the notebook app or use Jupyter g
Hub available on RCAC (https://www.rcac.purdue.edu/ "
compute/scholar) o D

https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://jupyter.org/
https://www.rcac.purdue.edu/compute/scholar
https://www.rcac.purdue.edu/compute/scholar
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://jupyter.org/
https://www.rcac.purdue.edu/compute/scholar
https://www.rcac.purdue.edu/compute/scholar

basic variables

® No “declaration” command as in other programming languages
® Variable is created when a value is assigned to it
® Can change type after they have been set
® Few rules on naming: Can make them very descriptive!
® Must start with a letter or underscore
® (Case-sensitive (purdue & Purdue are different)

® Combinations (+) work on all types
“XyZ) + CfabCJJ — CCXyZ abCJJ

3.2 +1 =4.2

operators and control statements

® Comparison operators: ® Arithmetic operators:

== | =
d b)a'b)a<b) a+b_,a_b)a*b5

a <= b, a>b, a>=0>b

a/ b, a%b, a**b

® |f statement: .
® Assighment operators:

if r < 3:

print("x") a=b, a+=b, a -=b,

o [f, elif, else (multiline blocks): a *= b, a /=b, a **= b

if b > a: .

print("b is greater than a") @ Log|ca| Qperatgrs;
elif a == b:

print("a and b are equal") (a and b), (a or b),
else:

print("a is greater than b”) not(a), not(a or b)

lists

® One of the four collection data types ® Length using len() method
® Also tuples, sets, and dictionaries print(len(thislist))
® Lists are ordered, changeable, and ® Adding items to a list
allow duplicate members thislist.append(“orange”)
thiclict = thislist.insert(1, “orange”)
["apple"”, "banana", “apple”, : : :
“cherry”] ® Removing items from a list

. . . thislist.remove(“banana™)
® Can pass in an integer index, or a thislist.pop(1)

range of indexes o |
e ® Defining lists with shorthand
thislist[@] = “apple”

thislist[-1] = “cherry” new list = 5 * [0O]
thislist[1:3] = [“banana”, “apple”]

new list = range(5)

loops (more control statements)

® while loop: Execute while for x in range(5,10):

condition is true y = X % 2
print(y)
i=1
while i < 6: ® break:Stop a loop where it is
print(i) .
i4= 1 and exit
® for loop: Iterate over a sequence ® continue: Move to next
for x in "banana': iteratiOn Of IOOP
print(x) for val 1in “sammy the dog”:
1f val == “h":
® range() operator can be a Dreak

useful loop iterator: print(val)

lists in for loops

® |n other programming languages, for ® Can also iterate through a list of lists
loop variables are integers data list = [[1,2],[2,6],[5,7]]
for point in data list:
® |[n Python, can use any ‘iterable’ object [X,Y] = point
Z = X 2
fruits = ["apple”, "banana", "cherry"] print(x,y,z)
for x in fruits:
if x == "banana": ® Can use the range function to iterate
continue through integers
print(x)
for x in range(2, 30, 3):
int
® Nested loops can be used too Prant ()
adj = ["red", "big", "tasty"] ® Can use a list to index another list
fruits = ["apple”, "banana", "cherry"] ind = [1, 3, 5, 7]
for x 1in adj: values = [0] * 8
for y in fruits: for i in ind:

print(x, y) values[i] =1 / 2

functions

Block of code which runs when ® To return a value, use the return
called statement
Defined using def keyword def my_function(x):

return 5 * x
def my function():

print("Hello from a function”) orint(my function(3))
. o print(my function(5))
Call a function using its name
my function() ® For multiple arguments, can use

keywords to specify order
Parameters can be passed as

- - def arithmetic(x,y,z):
input to functions ef arithmetic(x,y,z)

return (x+y)/z

def my function(country):
print("I am from " + country) print(arithmetic(z=3,x=2,y=4))

tuples

® Another of the four collection ® Once a tuple is created, items cannot be
data types added or changed

® Tuples are ordered, unchangeable, ® Workaround: Change to list, back to tuple
and allow duplicate members ® Check if item exists

. _ if "apple” in thistuple:

tblstup,],'e N v cc ' print("Yes, 'apple' is in the fruits
(“apple”, "banana", “apple”, tuple")
“cherry”)

® Tuple with one item needs comma

® |[ndexed the same way as lists thistuple = (“apple"”,) #Tuple

thistupl “apple") #Not a tupl
thistuple[@0] = “apple” tstuple = (Tapplen) #Not a tuple
thistuple[-1] = “cherry” ® Built in functions
thistuple[1l:3] = (“banana”, . « .
y 1e”) thistuple.count(“apple")
app thistuple.index(“apple")

|0

sets

® Collection which is unordered, (half) ® Cannot change existing items, but can

changeable, and does not allow add and remove items

dup|icates thisset.add(“orange")
thisset.update(["orange”, "mango", “gra
pes™])

® Written with curly brackets thisset.remove("banana)

E:ﬁ;ii;,; t"apple”, “banana’, ® Also have set operations just like
mathematical objects
® Cannot access items by index, but setl = {"a", "b", "c"}
can loop through and check for items set2 = 11, "b%, 3;
for X in thisset: setl.union(set2) #Union
print(x) setl.intersection(set2) #Intersection

setl.difference(set2) #setl \ set2
print("banana” in thisset) setl.issubset(set2) #Testing if subset

dictionaries

® (Collection which is unordered,

changeable, and indexed

® Also written with curly brackets, but

have keys and values

thisdict = {
"brand”: "Ford",
"model”: "Mustang",
"year": 1964

}

® Access/change/add values of items by

referring to the key name

thisdict[“model™]
thisdict[“year"] = 2019
thisdict[“color”] = "red"

12

® Can iterate through the keys, values, or both

for x in thisdict:
print(thisdict[x])

for x in thisdict.values():

print(x)

for x, y in thisdict.items():
print(x, Vy)

® [ike other collections, can create a dictionary of

dictionaries

childl
child2
child3

myfamily =
"child3"

("
("
("

name" : “Emil", "year" : 2004}
name" : “Tobias", "year" : 2007}
name" : “Linus”, "year" : 2011}

{“child1"” : childl, "child2" : child2,

: child3}

® Use the copy method (not direct assighment) to

make a copy of a dictionary

mydict = thisdict.copy()

version control

ommand line and bash

® Command Line Interface (CLI) for
interacting with your operating b

#! /bin/bash
#07/06/18 A BASH script to collect EXIF metadata

#07/06/18 create metadata directory, create text file output for each file, append basename, place output in metadata directory
S Ste m #07/06/18 create script.log to verify processing of files and place in metadata directory
#07/06/18 Author: Sandy Lynn Ortiz - Stanford University Libraries - Born Digital Forensics Lab

A testing codeblock, clean up last run #5584
rm -rf ./metadata
echo -ne "\\n metadata directory cleaned! \\n\\n"

o U N iX SheII:Avai Iable by defau It On s testing codeblock, clean up last run ##

#create variable current working directory
CWD=%$(pwd)

[J
I I n ux an d m aCO S #create directory and create variable META to store path, create LOGFILE in META directory
mkdir metadata

cd metadata

META=$(pwd)

LOGFILE="$META/script.log"

cd "$CwD"

echo -ne "\\n Current working directory is: \\n" $CwWD "\\n"

[J
® \VWind : https://
I n OWS u Se rs ° PS. #create variable EXCL to exclude script file from processing
EXCL=$%$(basename "$0")
echo -ne "\\n Exclude Script file from processing: " $EXCL "\\n\\n"
www.howtogeek.com/249966/
#search for jpg files in curr dir/subdir, ignore case, pipe(send output from cmdl to cmd2) to chain of commands
o . #create EXIF text files in META dir (redirect output)
echo -ne "\\n Processing EXIF metadata now... \\n\\n"
OW-tO-I n Sta -an - u Se-t e- In ux— find $(cd "$CWD") -depth -iname "*.jpg" | while read filename; do exiftool "$filename" > "$META"/"$(basename "$filename")" "exif.txt"; done

#TEST - create EXIF text files in META dir(redirect), print file STDOUT redirect/append to LOGFILE - TEST
#echo -ne "\\n Processing EXIF metadata now... \\n\\n"

. #find $(cd "$CWD") -depth -iname "*.jpg" | while read filename; do exiftool "$filename" > "$META"/"$(basename "$filename")" "exif.txt"
as -S e -O n -WI n OWS- #printft "\\n $filename" >> "$LOGFILE"; done

echo -ne "\\n\\n Processing is finished! \\n\\n\\n"

® Bash script: Sequence of commands,
typically saved as .sh file

| 4

https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/

overview of version control

® Automatically keep old versions of code and/or documentation

local server

® Can revert back to old versions

O

® (Can see differences (“'diffs”’) between versions

® Typically through maintenance of repository on a server

® Can sync up code between different machines O

® Can share code updates across many people

® “git”’: One of the most popular version control systems 9
® Each “project” goes into a different “repository” commit
® Repositories can be public (e.g., homework assignments) or &

private (e.g., homework solutions prior to the due date :D)

® We will use GitHub to manage assignments in this course

|5

git illustration

. . . . Remote repository
Working Directory Staging Local Repository (GitHub)
* Version A
Nothi Nothi Nothi
othing othing othing . Version B
git clone <repository|url>
. . . * Version A e Version A
Files from Version B Nothing . Version B . Version B

16

Working Directory
[Modify files]

Modified files from
Version B

git add <filenamel> <

Modified files from
Version B

git commit -m ‘A comm

Files from Version C

git push

Files from Version C

git illustration

Staging

Nothing

filename2>

Modified files from
Version B

1t message’

Nothing

Nothing

Local Repository

Remote repository
(GitHub)

Version A
Version B

Version A
Version B

Version A
Version B

Version A
Version B

Version A
Version B
Version C

Version A
Version B

Version A
Version B
Version C

Version A
Version B
Version C

|7

