
ECE 20875
Python for Data Science

n-grams and basic natural
language processing

Chris Brinton and Qiang Qiu

(Adapted from material developed by Profs. Milind Kulkarni,
Stanley Chan, Chris Brinton, David Inouye)

text data analysis
• Written text is often treated as a form of data for

analysis

• Some types of analyses:

• Measuring similarity between documents

• Extracting topics from documents

• Finding the most frequently occurring words

• Quantifying the importance of phrases

• Most of these involve breaking up documents
into words or “n-grams”

Popular example: Latent
Dirichlet Allocation (LDA)

documents: combinations of topics

topics: combinations of words

n-grams
• n-grams break up a sentence into overlapping subsequences of length n

• n typically refers to words or characters (though it could also be e.g., syllables)

• Unigrams (n=1), bigrams (n=2), trigrams (n=3), …

• Consider the string: “I	saw	a	cat”

• Word-based 3-grams:

“I	saw	a”,	“saw	a	cat”	

• Character-based 3-grams:

“I⎵s”,	“⎵sa”,	“saw”,	“aw⎵”,	“w⎵a”,	“⎵a⎵”,	“a⎵c”,	“⎵ca”,	“cat”

word-based n-gram extraction

bag-of-words
• The same n-gram can appear multiple times in a string

• This indicates a higher frequency

• Generally we only care about order within an n-gram, not between n-
grams

• Bag-of-words model: Order between words (more generally, between n-
grams) in a document is not considered

• We call it “bag-of-words,” but it’s really “bag-of-n-grams”

• For example, consider this string: “wan	can	cup”	

• bag-of-words of character-based 3-grams:

wan	:	1			an⎵	:	2			n⎵c	:	2	

⎵ca	:	1			can	:	1			⎵cu	:	1			cup	:	1

• Where would the 0s come from?

• We often compare documents by their
bag-of-words representations

language classification
• Consider the commonly encountered language classification problem, i.e.,

identifying the language in which a document is written

• We could consider the n-grams of characters contained in the document

• Documents written in a particular language
will tend to have similar n-gram frequencies
(e.g., “the” in English vs. “el” in Spanish)

• We can compare a document of interest to
known n-gram language frequencies

• Can visualize this by building a histogram of the n-grams

• Treat each n-gram across the documents as a separate (categorical) bucket

unigram bigram trigram

n-gram histogram examples
n-grams in French document n-grams in Spanish document

n-grams in English document n-grams in mystery document

• How would we quantify
which language is
“closest” to the
mystery document?

• We could use the MSE
between the n-gram
vectors

n-gram importance
• How do we quantify the importance of an n-gram in a document?

• One possibility: Count the number of times it occurs,
i.e., its frequency

• More frequently occurring should be more important

• But what about common words like “a”, “as”, “is”, …?

• These specific examples are stopwords, which we should probably remove from the
analysis of “importance” anyway

• But many high frequency non-stopwords will not provide much information in a given
context (e.g., “Disney” in a collection of documents about “Disney	World”)

• Need to somehow measure how “unique” the n-gram is across documents

tf-idf score
• A statistic that quantifies this intuition is the term

frequency-inverse document frequency or tf-idf score

• One of the most popular schemes used today

• Let be a term (n-gram), be a document, and be a
corpus (collection of documents) under consideration

• The tf-idf score of term in document with respect to
corpus is

• Many different methods for quantifying and

t d D

t d
D

𝚝𝚏𝚒𝚍𝚏(t, d, D) = 𝚝𝚏(t, d) ⋅ 𝚒𝚍𝚏(t, D)

𝚝𝚏 𝚒𝚍𝚏

Corpus

term document

Here we we will assume terms
are words, but more generally

they can be n-grams

tf-idf score
• Term frequency : Typically the fraction of terms in document

which are term

• Letting be the number of occurrences of in ,

• Inverse document frequency : A measure of how
rare term is across the corpus (i.e., how much information
it provides about a document it appears in)

• Letting be the number of documents in the corpus and be
the number of documents where occurs, it is typically quantified as

𝚝𝚏(t, d) d
t

ft,d t d

𝚝𝚏(t, d) =
ft,d

∑t′
ft′ ,d

𝚒𝚍𝚏(t, D)
t D

N = |D | nt
t

𝚒𝚍𝚏(t, D) = log10 (nt

N)
−1

= log10
N
nt

Why log?

example
Dataset: Take the following four strings to be (very small) documents
comprising a (very small) corpus:

1. “The	sky	is	blue.”	

2. “The	sun	is	bright	today.”	

3. “The	sun	in	the	sky	is	bright.”	

4. “We	can	see	the	shining	sun,	the	bright	sun.”	

Task: Filter out obvious stopwords, and determine the tf-idf scores of each
term in each document.

solution
• After stopword filtering: (1) “sky	blue”, (2) “sun	bright	today”, (3) “sun	
sky	bright”, (4) “can	see	shining	sun	bright	sun”

• TF: Find doc-word matrix, then normalize rows to sum to 1

blue bright can see shining sky sun today

1 1 0 0 0 0 1 0 0

2 0 1 0 0 0 0 1 1

3 0 1 0 0 0 1 1 0

4 0 1 1 1 1 0 2 0

blue bright can see shining sky sun today

1 1/2 0 0 0 0 1/2 0 0

2 0 1/3 0 0 0 0 1/3 1/3

3 0 1/3 0 0 0 1/3 1/3 0

4 0 1/6 1/6 1/6 1/6 0 1/3 0

ft,d 𝚝𝚏(t, d) =
ft,d

∑t′
ft′ ,d

solution
• IDF: Find number of documents each word occurs in, then compute formula

blue bright can see shining sky sun today

1 1 0 0 0 0 1 0 0

2 0 1 0 0 0 0 1 1

3 0 1 0 0 0 1 1 0

4 0 1 1 1 1 0 2 0

n_t 1 3 1 1 1 2 3 1

blue bright can see shining sky sun today

0.602 0.125 0.602 0.602 0.602 0.301 0.125 0.602

ft,d 𝚒𝚍𝚏(t, D) = log10
N
nt

log10
4
1

= 0.602
N = 4

log10
4
3

= 0.125

solution

blue bright can see shining sky sun today

1 0.301 0 0 0 0 0.151 0 0

2 0 0.0417 0 0 0 0 0.0417 0.201

3 0 0.0417 0 0 0 0.100 0.0417 0

4 0 0.0209 0.100 0.100 0.100 0 0.0417 0

• TF-IDF: Multiply TF and IDF scores,
use to rank importance of words
within documents

• Most important word for each
document is highlighted

blue bright can see shining sky sun today

1 1/2 0 0 0 0 1/2 0 0

2 0 1/3 0 0 0 0 1/3 1/3

3 0 1/3 0 0 0 1/3 1/3 0

4 0 1/6 1/6 1/6 1/6 0 1/3 0

blue bright can see shining sky sun today

0.602 0.125 0.602 0.602 0.602 0.301 0.125 0.602x

𝚒𝚍𝚏(t, D)
𝚝𝚏(t, d)

𝚝𝚏𝚒𝚍𝚏(t, d, D) = 𝚝𝚏(t, d) ⋅ 𝚒𝚍𝚏(t, D)

text preprocessing
• Typically apply a series of preprocessing steps prior to analysis

• Mostly using Python’s nltk (natural language processing toolkit) library

1. Tokenization

• Break text into tokens, e.g., n-grams of words
(nltk.word_tokenize(string) or string.split())

• Remove non-word characters, e.g., punctuation

2. Stopword removal

• Make words lowercase (s.lower())

• Remove common word tokens (stopwords.words(‘english’))

MacHine	LeArning.	
it	is	Important!

[MacHine,	LeArning,	
it,	is,	Important]

[machine,	learning,	
important]

tokenization

stopword
removal

text preprocessing
3. Stemming / Lemmatizing

• Stemming reduces inflected words to their word stem (e.g.,
studies,	studying	->	studi)

• Lemmatization maps words to their dictionary form,
representing them as words (e.g., studies,	studying	—>	
study)

• Requires part-of-speech (POS) specification

• Lemmatization is more complex (we need to tag a words
POS to get the right result), but preferred when possible (e.g.,
on the right, the stemmed version of important is import)

• from	nltk.stem	import	PorterStemmer,																												
WordNetLemmatizer

stemming

[machine,	learning,	
important]

[machin,	learn,	
import]

natural language processing
• What we have been studying are specific methods in

natural language processing, or NLP

• NLP is concerned with how to automatically analyze
large corpuses of text

• Two main classes of NLP: rules-based and statistical

• tf-idf is a simple (yet widely used) statistical technique

• Today’s innovations are largely in the statistical
category, leveraging machine learning

• Key is building knowledge representations

natural language processing
• Some common functions of NLP

• Machine translation: Translating between
languages (e.g., Google translate)

• Speech recognition: Determine the textual
representation of an audio track (e.g., Siri)

• Document summarization: Determine an
effective summary of a document (e.g., Watson)

• All of these are constantly being innovated with
new NLP algorithms

