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text data analysis
• Written text is often treated as a form of data for 

analysis


• Some types of analyses:


• Measuring similarity between documents


• Extracting topics from documents


• Finding the most frequently occurring words


• Quantifying the importance of phrases


• Most of these involve breaking up documents 
into words or “n-grams”

Popular example: Latent 
Dirichlet Allocation (LDA)

documents: combinations of topics

topics: combinations of words



n-grams
• n-grams break up a sentence into overlapping subsequences of length n


• n typically refers to words or characters (though it could also be e.g., syllables)


• Unigrams (n=1), bigrams (n=2), trigrams (n=3), …


• Consider the string: “I	saw	a	cat”


• Word-based 3-grams:


“I	saw	a”,	“saw	a	cat”	

• Character-based 3-grams:


“I⎵s”,	“⎵sa”,	“saw”,	“aw⎵”,	“w⎵a”,	“⎵a⎵”,	“a⎵c”,	“⎵ca”,	“cat”

word-based n-gram extraction



bag-of-words
• The same n-gram can appear multiple times in a string


• This indicates a higher frequency


• Generally we only care about order within an n-gram, not between n-
grams


• Bag-of-words model: Order between words (more generally, between n-
grams) in a document is not considered


• We call it “bag-of-words,” but it’s really “bag-of-n-grams”


• For example, consider this string: “wan	can	cup”	

• bag-of-words of character-based 3-grams:


wan	:	1			an⎵	:	2			n⎵c	:	2	

⎵ca	:	1			can	:	1			⎵cu	:	1			cup	:	1

• Where would the 0s come from?


• We often compare documents by their 
bag-of-words representations



language classification
• Consider the commonly encountered language classification problem, i.e., 

identifying the language in which a document is written


• We could consider the n-grams of characters contained in the document


• Documents written in a particular language                                                                                         
will tend to have similar n-gram frequencies                                                                        
(e.g., “the” in English vs. “el” in Spanish)


• We can compare a document of interest to                                                                      
known n-gram language frequencies


• Can visualize this by building a histogram of the n-grams


• Treat each n-gram across the documents as a separate (categorical) bucket

unigram bigram trigram



n-gram histogram examples
n-grams in French document n-grams in Spanish document

n-grams in English document n-grams in mystery document

• How would we quantify 
which language is 
“closest” to the 
mystery document?


• We could use the MSE 
between the n-gram 
vectors



n-gram importance
• How do we quantify the importance of an n-gram in a document?


• One possibility: Count the number of times it occurs,                                                       
i.e., its frequency


• More frequently occurring should be more important


• But what about common words like “a”, “as”, “is”, …?


• These specific examples are stopwords, which we should probably remove from the 
analysis of “importance” anyway


• But many high frequency non-stopwords will not provide much information in a given 
context (e.g., “Disney” in a collection of documents about “Disney	World”) 


• Need to somehow measure how “unique” the n-gram is across documents



tf-idf score
• A statistic that quantifies this intuition is the term 

frequency-inverse document frequency or tf-idf score


• One of the most popular schemes used today


• Let  be a term (n-gram),  be a document, and  be a 
corpus (collection of documents) under consideration


• The tf-idf score of term  in document  with respect to 
corpus  is
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tf-idf score
• Term frequency : Typically the fraction of terms in document  

which are term 


• Letting  be the number of occurrences of  in ,





• Inverse document frequency : A measure of how                                                                           
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it provides about a document it appears in)
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example
Dataset: Take the following four strings to be (very small) documents 
comprising a (very small) corpus:


1. “The	sky	is	blue.”	

2. “The	sun	is	bright	today.”	

3. “The	sun	in	the	sky	is	bright.”	

4. “We	can	see	the	shining	sun,	the	bright	sun.”	

Task: Filter out obvious stopwords, and determine the tf-idf scores of each 
term in each document.



solution
• After stopword filtering: (1) “sky	blue”, (2) “sun	bright	today”, (3) “sun	
sky	bright”, (4) “can	see	shining	sun	bright	sun”


• TF: Find doc-word matrix, then normalize rows to sum to 1

blue bright can see shining sky sun today

1 1 0 0 0 0 1 0 0

2 0 1 0 0 0 0 1 1

3 0 1 0 0 0 1 1 0

4 0 1 1 1 1 0 2 0

blue bright can see shining sky sun today

1 1/2 0 0 0 0 1/2 0 0

2 0 1/3 0 0 0 0 1/3 1/3

3 0 1/3 0 0 0 1/3 1/3 0

4 0 1/6 1/6 1/6 1/6 0 1/3 0

ft,d 𝚝𝚏(t, d) =
ft,d

∑t′ 
ft′ ,d



solution
• IDF: Find number of documents each word occurs in, then compute formula

blue bright can see shining sky sun today

1 1 0 0 0 0 1 0 0

2 0 1 0 0 0 0 1 1

3 0 1 0 0 0 1 1 0

4 0 1 1 1 1 0 2 0

n_t 1 3 1 1 1 2 3 1

blue bright can see shining sky sun today

0.602 0.125 0.602 0.602 0.602 0.301 0.125 0.602
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solution

blue bright can see shining sky sun today

1 0.301 0 0 0 0 0.151 0 0

2 0 0.0417 0 0 0 0 0.0417 0.201

3 0 0.0417 0 0 0 0.100 0.0417 0

4 0 0.0209 0.100 0.100 0.100 0 0.0417 0

• TF-IDF: Multiply TF and IDF scores, 
use to rank importance of words 
within documents


• Most important word for each 
document is highlighted

blue bright can see shining sky sun today

1 1/2 0 0 0 0 1/2 0 0

2 0 1/3 0 0 0 0 1/3 1/3

3 0 1/3 0 0 0 1/3 1/3 0

4 0 1/6 1/6 1/6 1/6 0 1/3 0

blue bright can see shining sky sun today

0.602 0.125 0.602 0.602 0.602 0.301 0.125 0.602x

𝚒𝚍𝚏(t, D)
𝚝𝚏(t, d)

𝚝𝚏𝚒𝚍𝚏(t, d, D) = 𝚝𝚏(t, d) ⋅ 𝚒𝚍𝚏(t, D)



text preprocessing
• Typically apply a series of preprocessing steps prior to analysis


• Mostly using Python’s nltk (natural language processing toolkit) library


1. Tokenization 

• Break text into tokens, e.g., n-grams of words 
(nltk.word_tokenize(string) or string.split())


• Remove non-word characters, e.g., punctuation


2. Stopword removal 

• Make words lowercase (s.lower())


• Remove common word tokens (stopwords.words(‘english’))

MacHine	LeArning.	
it	is	Important!

[MacHine,	LeArning,	
it,	is,	Important]

[machine,	learning,	
important]

tokenization

stopword 
removal



text preprocessing
3. Stemming / Lemmatizing 

• Stemming reduces inflected words to their word stem (e.g., 
studies,	studying	->	studi)


• Lemmatization maps words to their dictionary form, 
representing them as words (e.g., studies,	studying	—>	
study)


• Requires part-of-speech (POS) specification


• Lemmatization is more complex (we need to tag a words 
POS to get the right result), but preferred when possible (e.g., 
on the right, the stemmed version of important is import)


• from	nltk.stem	import	PorterStemmer,																												
WordNetLemmatizer

stemming

[machine,	learning,	
important]

[machin,	learn,	
import]



natural language processing
• What we have been studying are specific methods in 

natural language processing, or NLP


• NLP is concerned with how to automatically analyze 
large corpuses of text


• Two main classes of NLP: rules-based and statistical


• tf-idf is a simple (yet widely used) statistical technique


• Today’s innovations are largely in the statistical 
category, leveraging machine learning


• Key is building knowledge representations



natural language processing
• Some common functions of NLP


• Machine translation: Translating between 
languages (e.g., Google translate)


• Speech recognition: Determine the textual 
representation of an audio track (e.g., Siri)


• Document summarization: Determine an 
effective summary of a document (e.g., Watson)


• All of these are constantly being innovated with 
new NLP algorithms


