
4/17/2020 iterators

localhost:8888/nbconvert/html/iterators.ipynb?download=false 1/10

Iterators and Generators

What's going on when you run a for loop in Python?

In [2]: a = [1, 4, 5, 9]
for x in a :
 print (x ** 2)

What is happening is that under the hood, Python is creating an iterator -- an object that lets you step through
the list one element at a time, returning each element as it goes. We can actually get to the underlying iterator of
a list by calling the __iter__ function:

In [20]: i = a.__iter__()
print(i)

An iterator object is one that implements the iterator protocol. A protocol is like an interface in Java or an
abstract class in C++ -- it's basically a contract that an object must satisfy to be used in certain ways.

The iterator protocol says that an iterator needs to support two operations:

__iter__ that returns the iterator itself, and
__next__ that, as you might expect, returns the next element of whatever is being iterated over.

We need to define __iter__ because for loops invoke __iter__ on whatever you are iterating over.
Python wants you to be able to use collections like lists or the iterators themselves in for loops.

In [21]: print(i.__next__())
print(i.__next__())
print(i.__next__())
print(i.__next__())

1
16
25
81

<list_iterator object at 0x10de87110>

1
4
5
9

4/17/2020 iterators

localhost:8888/nbconvert/html/iterators.ipynb?download=false 2/10

When an iterator runs out of items (i.e., when __next__ gets to the end of the collection), it raises a
StopIteration exception.

We have only briefly talked about exceptions in this class. Exceptions are a language construct
that lets you break out of even very deep control flow when something "bad" happens (it doesn't
have to be truly bad, like in the StopIteration case). You can then catch exceptions and do
something (like end a for loop) when they are raised.

In [22]: print(i.__next__()) #this will raise an exception

Because iterators are different objects, you can create multiple iterators from the same collection that each step
over the data:

In [6]: i1 = a.__iter__()
i2 = a.__iter__()
print(i1.__next__())
print(i1.__next__())
print(i2.__next__())
print(i2.__next__())
print(i1.__next__())
print(i1.__next__())
print(i2.__next__())
print(i2.__next__())

Actually, in code, the 'right' way to call a.__iter__() and a.__next__() and is to write iter(a) and
next(a) , which is also simpler. For our purposes, both implementations do the same thing, though.

Let's write an iterator that starts at 1, returns numbers increasing by one, and stops after 20:

StopIteration Traceback (most recent call l
ast)
<ipython-input-22-34bb15456ba2> in <module>
----> 1 print(i.__next__()) #this will raise an exception

StopIteration:

1
4
1
4
5
9
5
9

4/17/2020 iterators

localhost:8888/nbconvert/html/iterators.ipynb?download=false 3/10

In [23]: class MyNumbers:
 def __iter__(self):
 self.a = 1 #start the iterator at 1
 return self

 def __next__(self):
 if self.a <= 20:
 x = self.a #define x as the current iterator
 self.a += 1 #increment self.a for next time
 return x #return the current iterator
 else:
 raise StopIteration() #this is how we stop a loop

myclass = MyNumbers()
myiter = iter(myclass)

for x in myiter:
 print(x)

Let's write an iterator that prints out every other element of a list. Note that we're going to use a trick: we'll keep
a "normal" iterator for the list as part of our skip iterator:

In [8]: class skipIterator :
 def __init__(self, inList) :
 self._inner = inList.__iter__()

 def __iter__(self) :
 return self #Just need to return the iterator object

 def __next__(self) :
 self._inner.__next__() #skip one element
 return self._inner.__next__() #return the next

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

4/17/2020 iterators

localhost:8888/nbconvert/html/iterators.ipynb?download=false 4/10

In [9]: s = skipIterator([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
for x in s :
 print (x)

In the above example, why don't we need to raise StopException ourselves? The _inner iterator will raise the
exception, and since we don't do anything special, that exception will propagate out of __next__ as if we raised
it ourself.

Generators
Normally, an iterator needs a way to keep track of its "current" position in the data its iterating over, which can
make for complicated code. Instead, we can use generators to do this kind of tracking automatically. A
generator is a function that yields elements as it executes. A yield statement essentially returns a value from the
function, but "pauses" the function where the yield was invoked.

Any function that has a yield statement in it automatically returns a generator object. It implements the
iterator protocol (so you can use it in for loops). Calling __next__ on a generator object executes the function
until you get to a yield statement, then pauses and returns whatever is yielded. Calling __next__ again
just picks up execution at the yield statement and executes until the next yield .

To motivate the use of generators, let's start by writing an iterator that counts out the gaps between particular
letters in a string. Note how we have to keep track of both how far along we are in the string as well as how long
the current gap is:

In [29]: class findDist :
 def __init__(self, tstr, char) :
 self.string = tstr
 self.char = char
 self.pos = 0

 def __iter__(self) :
 return self

 def __next__(self) :
 delta = 0
 if (self.pos == len(self.string)) :
 raise StopIteration() #at the end of the str
 while (self.string[self.pos] != self.char) :
 delta += 1 #keep track of current distance
 self.pos += 1 #keep track of where we currently are
 self.pos += 1 #important to skip over the char before star
ting the next count
 return delta

2
4
6
8
10

4/17/2020 iterators

localhost:8888/nbconvert/html/iterators.ipynb?download=false 5/10

In [30]: for i in findDist('abracadabra', 'a') :
 print (i)

Notice that this implementation will also result in an error whenever the final letter of tstr is not an a . To
prevent this, we would need to add a raise Stopiteration clause in the while loop, so that it is
checking whenever self.pos is incremented.

Now let's write the same thing using a generator. By writing a function with yield , we automatically get an
iterator without having to write a class that implements the protocol:

In [31]: def findDistYield(string, char) :
 delta = 0
 for c in string :
 if c == char :
 yield delta #returns current delta and continues execution
 delta = 0
 else :
 delta += 1

In [32]: for i in findDistYield('abracadabra', 'a') :
 print(i)

We can use iterators and generators to write iterators for new classes that we define. Consider a linked list class
with an iterator:

0
2
1
1
2

0
2
1
1
2

4/17/2020 iterators

localhost:8888/nbconvert/html/iterators.ipynb?download=false 6/10

In [14]: class LinkedList :

 def __init__(self, init_val = None) :
 self.data = init_val
 self.next = None

 def insert(self, val) :
 newNode = LinkedList(self.data)
 newNode.next = self.next
 self.next = newNode
 self.data = val

 def insertList(self, vals) :
 for i in vals[::-1] :
 self.insert(i)

 class LinkedListIterator :
 def __init__(self, cur) :
 self.cur = cur

 def __iter__(self) :
 return self

 def __next__(self) :
 if (self.cur.data == None) :
 raise StopIteration
 else :
 ret = self.cur.data
 self.cur = self.cur.next
 return ret

 def __iter__(self) :
 return LinkedList.LinkedListIterator(self)

In [15]: l = LinkedList()
l.insertList([1, 2, 3, 4, 5])
for x in l :
 print(x)

Notice that here we need an iterator subclass, called LinkedListIterator , to actually cycle through the
values in the list. This part becomes much simpler with a generator, where we can just yield the data for the
current element and move to the next one:

1
2
3
4
5

4/17/2020 iterators

localhost:8888/nbconvert/html/iterators.ipynb?download=false 7/10

In [16]: class LinkedList2 :

 def __init__(self, init_val = None) :
 self.data = init_val
 self.next = None

 def insert(self, val) :
 newNode = LinkedList(self.data)
 newNode.next = self.next
 self.next = newNode
 self.data = val

 def insertList(self, vals) :
 for i in vals[::-1] :
 self.insert(i)

 def __iter__(self) :
 cur = self
 while (cur.data != None) :
 yield cur.data
 cur = cur.next

In [17]: l2 = LinkedList2()
l2.insertList([1, 2, 3, 4, 5])
for x in l2 :
 print(x)

Much shorter!

But note that LinkedList is a recursive type: its next pointer is another linked list. Could we do something
even more clever with generators? Yes! We can yield the current element, then iterate over the rest of the list by
invoking its generator.

In the code below, you can think of yield from g , where g is a generator, as implementing the statement
for v in g: yield v (though they are not exactly equivalent in all cases).

1
2
3
4
5

4/17/2020 iterators

localhost:8888/nbconvert/html/iterators.ipynb?download=false 8/10

In [18]: class LinkedList3 :

 def __init__(self, init_val = None) :
 self.data = init_val
 self.next = None

 def insert(self, val) :
 newNode = LinkedList(self.data)
 newNode.next = self.next
 self.next = newNode
 self.data = val

 def insertList(self, vals) :
 for i in vals[::-1] :
 self.insert(i)

 def __iter__(self) :
 if self.data != None :
 yield self.data
 yield from self.next

In [19]: l3 = LinkedList3()
l3.insertList([2, 4, 6, 8, 10])
for x in l3 :
 print(x)

Chaining Generators
We can chain generators together: by passing one generator to another and iterating over each, we can build a
pipeline that passes data from one to the next. What's great about this is that the processing happens one
element at a time (thanks to the yield statement) rather than fully building a list each time.

Let's first do this the normal way:

In [19]: def square(vals) :
 return [v ** 2 for v in vals]

def negate(vals) :
 return [-1 * v for v in vals]

def div(vals) :
 return [v / 2 for v in vals]

negate(div(square([1, 2, 3, 4, 5])))

2
4
6
8
10

Out[19]: [-0.5, -2.0, -4.5, -8.0, -12.5]

4/17/2020 iterators

localhost:8888/nbconvert/html/iterators.ipynb?download=false 9/10

But what's happening is that we're creating a brand new list each time we call the next function in the chain.
This can take a lot of memory, and a lot of time, if the lists are big. Let's now do the same thing with generators:

In [20]: def ysquare(vals) :
 for v in vals :
 yield v ** 2

def ynegate(vals) :
 for v in vals :
 yield -1 * v

def ydiv(vals) :
 for v in vals :
 yield v / 2

ynegate(ydiv(ysquare([1, 2, 3, 4, 5])))

Note that this does not generate the list, since ynegate is a generator function. You have to iterate over it in
order to get the values out of it. Luckily, list s can be constructed by passing them an iterator:

In [21]: g = ynegate(ydiv(ysquare([1, 2, 3, 4, 5])))
list(g)

We get the same result, but each time the list constructor asks for the next element, each generator in the
chain operates on just one additional item in the input list. The item is squared, then yielded to ydiv , then
yielded to ynegate .

One final thing: just like we have list comprehensions as a fast way of building new lists, we have generator
expressions as a fast way of building simple generators:

In [22]: esquare = (v ** 2 for v in [1, 2, 3, 4, 5])
type(esquare)

It's probably useful to compare that to what the list comprehension would have looked like: [v ** 2 for v
in [1, 2, 3, 4, 5]] . But since we used a generator expression, we created a generator that needs to be
iterated over, rather than a new list. We can then keep the chain going:

In [23]: ediv = (v / 2 for v in esquare)
enegate = (-1 * v for v in ediv)

Out[20]: <generator object ynegate at 0x10f429a20>

Out[21]: [-0.5, -2.0, -4.5, -8.0, -12.5]

Out[22]: generator

4/17/2020 iterators

localhost:8888/nbconvert/html/iterators.ipynb?download=false 10/10

In [24]: list(enegate)

In []:

Out[24]: [-0.5, -2.0, -4.5, -8.0, -12.5]

