
ECE 20875
Python for Data Science

classification: k-nearest
neighbor

Chris Brinton and Qiang Qiu

(Adapted from material developed by Profs. Milind Kulkarni,
Stanley Chan, Chris Brinton, David Inouye)

k-nearest neighbor
• Naïve Bayes is a nice classifier, but it is parametric

• We must have a model of the data in mind, and
some prior knowledge, to use it effectively.

• What if we don’t have any such knowledge? What
if all we have is our input data, and it does not
seem to fit any existing distribution well?

• k-nearest neighbor (kNN) is a classifier that
requires no assumptions about the data:

• Look at the classes of the -nearest points and
pick the most frequent one

k

kNN algorithm
• Start with labeled training data, just like naïve Bayes

kNN algorithm
• Take new data point

kNN algorithm
• Draw a circle around it

kNN algorithm
• Grow the circle until it has k other points in it

• k is a parameter you set (e.g., 3)

kNN algorithm
• Grow the circle until it has k other points in it

• k is a parameter you set (e.g., 3)

kNN algorithm
• Count how many points from class 1 are in the circle and how many from

class 2

• Majority wins

• Count how many points from class 1 are in the circle and how many from class 2

• Majority wins

• How to choose ?

• Larger means we are less sensitive to outliers, but also less sensitive to possibly
informative (very near) neighbors

• Cross validation!

k

k

kNN algorithm

formal algorithm and python
• Algorithmic interpretation:

• Find the distance from new point to
every other point

• Sort by distance, pick closest points

• Predicted class is the one with the
most “votes” from these

• In Python

• from	sklearn.neighbors																																													
import	KNeighborsClassifier	

• https://scikit-learn.org/stable/modules/
classes.html#module-sklearn.neighbors

∥x − x0∥ x0
x

k

k

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.neighbors
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.neighbors

pros vs cons
+ Simple concept for classifier

+ No models or prior knowledge required

- Expensive to use model (compute distances from all other points)

- Does not help with missing data (classifier is only as good as labeled
training data)

- The intuition and usefulness can breakdown in high dimensions (what
does it mean to “near” in 1000 dimensions?)

binary evaluation metrics
• With regression, we used MSE (and) as our evaluation metrics

• In classification, these are not valid, because
our predictions are either right or wrong

• For binary classification, we typically report
several metrics (on a test set), based on a
confusion matrix (shown to the right).
The most common three are:

• Accuracy: Fraction of correct predictions

• Precision: Fraction of correct predictions in the predicted positive class

• Recall (or sensitivity): Fraction of correct predictions in the actual positive class

r2 see sklearn.metrics
in Python

composite binary metrics
• In regression problems, MSE is convenient: Single number that

indicates quality

• With classification problems, none of these confusion table metrics
tell the whole story:

• If there is significant class imbalance, accuracy can look very
good even if the classifier is not

• For example, suppose 90% of cars are minivans and 10% are
sports cars. If we always predict minivan, we will have 90%
accuracy!

• There are two composite metrics that can be useful:

• F1 score: Harmonic mean between precision and recall (both need
to be high for the F1 score to be high)

• AUROC: Area under true/false positive curve from varying decision
threshold from 0 (predict all negatives) and 1 (predict all positives) Classifier soft output (score)

Each threshold corresponds  
to one point on ROC curve

