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k-nearest neighbor
• Naïve Bayes is a nice classifier, but it is parametric 

• We must have a model of the data in mind, and 
some prior knowledge, to use it effectively.


• What if we don’t have any such knowledge? What 
if all we have is our input data, and it does not 
seem to fit any existing distribution well?


• k-nearest neighbor (kNN) is a classifier that 
requires no assumptions about the data:


• Look at the classes of the -nearest points and 
pick the most frequent one
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kNN algorithm
• Start with labeled training data, just like naïve Bayes



kNN algorithm
• Take new data point



kNN algorithm
• Draw a circle around it



kNN algorithm
• Grow the circle until it has k other points in it 


• k is a parameter you set (e.g., 3)
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kNN algorithm
• Count how many points from class 1 are in the circle and how many from 

class 2 

• Majority wins



• Count how many points from class 1 are in the circle and how many from class 2 

• Majority wins 

• How to choose ?


• Larger  means we are less sensitive to outliers, but also less sensitive to possibly 
informative (very near) neighbors


• Cross validation!
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kNN algorithm



formal algorithm and python
• Algorithmic interpretation:


• Find the distance  from new point  to 
every other point 


• Sort by distance, pick closest  points


• Predicted class is the one with the                                                                    
most “votes” from these 


• In Python


• from	sklearn.neighbors																																													
import	KNeighborsClassifier	

• https://scikit-learn.org/stable/modules/
classes.html#module-sklearn.neighbors

∥x − x0∥ x0
x
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pros vs cons
+ Simple concept for classifier


+ No models or prior knowledge required


- Expensive to use model (compute distances from all other points)


- Does not help with missing data (classifier is only as good as labeled 
training data)


- The intuition and usefulness can breakdown in high dimensions (what 
does it mean to “near” in 1000 dimensions?) 



binary evaluation metrics
• With regression, we used MSE (and ) as our evaluation metrics


• In classification, these are not valid, because                                                                                    
our predictions are either right or wrong


• For binary classification, we typically report                                                                                                  
several metrics (on a test set), based on a                                                                                   
confusion matrix (shown to the right).                                                                                        
The most common three are:


• Accuracy: Fraction of correct predictions


• Precision: Fraction of correct predictions in the predicted positive class


• Recall (or sensitivity): Fraction of correct predictions in the actual positive class

r2 see sklearn.metrics 
in Python



composite binary metrics
• In regression problems, MSE is convenient: Single number that 

indicates quality


• With classification problems, none of these confusion table metrics 
tell the whole story:


• If there is significant class imbalance, accuracy can look very 
good even if the classifier is not


• For example, suppose 90% of cars are minivans and 10% are 
sports cars. If we always predict minivan, we will have 90% 
accuracy!


• There are two composite metrics that can be useful:


• F1 score: Harmonic mean between precision and recall (both need 
to be high for the F1 score to be high)


• AUROC: Area under true/false positive curve from varying decision 
threshold from 0 (predict all negatives) and 1 (predict all positives) Classifier soft output (score)

Each threshold corresponds  
to one point on ROC curve


