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classification: logistic
regression




regression with two classes

e With linear regression, we model the relationship
between features and target with a linear equation:

A 1 + ® O 000 ® 0 00 @
yi=ﬁ0+ﬂ1x1+ﬂ2x2+ oo —|—ﬁmxm /

« Now, suppose we have two classes, i.e., y € {0, 1}. 0.5 e
We could use linear regression, but ...
0—1—e—eee X
* |t will treat the classes as numbers, interpolating
between the points * Need a decision threshold, i.e.,
y=0.5

* |t cannot be interpreted as a probability e In this case. we would never

predict the class y = 0,

 how would we generalize to multiple classes”? .
regardless of what x is!



logistic regression model

* |nstead of fitting a hyperplane (a line generalized to more than one

dimension), use the logistic function

to translate the output of linear regression to between
O@sv —> —oco0)and 1 (as v — o0)

—V

. Also notethat 1 — g(v) = (useful for derivations)

1l +e

* This converts the outputs to probabilities:

f5x) = gy + pTx) = P(y = 1)
1

- 1l +exp(—(fBy+fix;+prxo+ -+ 0,x,))
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e Now the decision rule

¢ Y(x) >05-y=1
¢ Y(x) <05 —-y=0

has a probabillistic interpretation



Interpreting coefficients

« In linear regression, the effect of a coefficient is clear: ,Bjxj means for every unit change

in x;, the model changes by f;

* For logistic regression, we need to find a different interpretation, since the weights no
longer have a linear effect

 Consider the odds, i.e., the ratio P(y = 1| x)/P(y = 0| x):
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Interpreting coefficients

 Then we consider the ratio of the odds e Consider
when x; is increased by 1: |
P =
odds,y1  exp(-- 4 fi(x;+ 1) + --) 5 1 +exp(— (3 + 2x; + 0.5x, — 3x3))
— — ¢
odds; exp(-- +,5ij + )

e For this model ...

o Thus, a unit change in X;; corresponds |
8 | * X; and X, increase the odds
to a factor ¢”/ change in the odds

* X5 decreases the odds

. e¥i>1: X; increases the odds

* X3 has the largest factor impact

. Vi< 1: X; decreases the odds on the odds (assuming the
features are normalized!)



training logistic regression

With linear regression, we can derive a closed-form solution for the parameters in terms of the
least-squares equations

For logistic regression, let’s consider the likelihood of the model over data samples i = 1,...,n:

L(ﬁ) — p(yl ‘ Xis ﬂ) — (f (xi))yi . (1 _f (Xi))l_yi when y; = 1, we want to maximize f;(x;), and
p p

when y; = (), we want to maximize 1 — f};(xl-)

And then the log likelihood, which is easier to optimize (like we did with GMMs):

[(B) = ) log [(fﬁoci))yi (= fon = =) [y,- log f3(x) + (1 — ylog(1 — f5(x))
i=1 ) i=1 )

There is no (known) closed form solution to maximize I(/), given the log fﬁ(xl-) terms



gradient descent (ascent)

for non-convex functions,
no guarantee of
convergence to optimum

Starung pe.
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« We want to find f to maximize I(f)

 Consider the gradient descent (ascent) algorithm, an
iterative procedure for finding a local minimum (maximum)
of a function by moving away from (towards) the gradient:

Global minima
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b b | |
........................................ ' In general, the step size
must be tuned correctly
« Here, a'is the step size of the algorithm at time ¢ 7 too small n too large

 Since [(f) is a concave function, we can guarantee that
gradient ascent will eventually converge to the global

maximum, so long as certain conditions on &' are met

In-sample Error, E;
In-sample Error, E;,

Weights, w Weights, w



example

Suppose we have a single parameter b for some model we are trying to
train. For this model, we find a log-likelihood function of

b—m\~
(53

where m and s are constants. Derive the iterative procedure for determining
the model parameters as a function of the step size a’. Run the procedure
for different values of &’ until # = 10 and compare the results.




solution

We always want to maximize the log-
likelihood, so we use gradient ascent.

Letting b’ be the value of b at iteration
f, our update procedure will be:

d
bt+1 — hl + at_l(bt)
db

Evaluating the derivative, this becomes:

¢2

i+l zbt_zat<bt—m>

Supposeax =0.1,m=95,s=0.7.If
we start at ' = 1.1 (arbitrary), we get

1.1 —
bl=11-2.0.1- = 2.692
0.72
, (2.692—5)
b2 =2692-2.0.1- = 3.634
0.72
b10=4965-2-.0.1- (4‘965 _ 5) = 4.979
0.72



solution

Below, we plot the evolution of b’ over  (see the Jupyter notebook), starting with

b’ = 1.1fora’ = 0.01, 0.05, 0.1, 0.2, 0.4, 0.5. Again, we setm = 5Sand s = 0.7.

Here, the y-axis is actually

—1(b), to make the values
positive. Maximizing the log-
likelihood Is equivalent to
minimizing the negative log-

likelihood.

Tuning o' is a very important

question!
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gradient ascent for logistic regression

» Back to logistic regression. Evaluating the partial derivative, variable 7, — just right
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gradient ascent for logistic regression

» Back to logistic regression. Evaluating the partial derivative, variable 7, — just right
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gradient ascent for logistic regression

 Back to logistic regression. Evaluating the partial derivative,
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gradient ascent for logistic regression

 Back to logistic regression. Evaluating the partial derivative, variable 7; — just right
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 Thus, we get the following gradient ascent rule for logistic regression: W |
n Bl \x,// Va

ﬁjf“ — ﬁjf + a' [Z (y; — fﬂ(xl-))xlj]
i=1




In python

from sklearn.linear model import
LogisticRegression

e https://scikit-learn.org/stable/
modules/generated/
sklearn.linear model.lLogisticRegres

sion.html

Most methods (fit, predict, ...) are the
same as linear regression

One difference: Regularization parameter C
e Higher C: Less regularization

* Lower C: More regularization

from sklearn.linear model
import LogisticRegression

from sklearn import metrics
logreg = LogisticRegression()
logreg.fit(X train,y train)

y pred = logreg.predict(X test)

metrics.accuracy score(y test,y
_pred)
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