
ECE 20875
Python for Data Science

introduction to
neural networks

Chris Brinton and Qiang Qiu

(Adapted from material developed by Profs. Milind Kulkarni,
Stanley Chan, Chris Brinton, David Inouye)

neural networks
• Show up everywhere (including in pop culture)

• Machine translation

• Image recognition

• Video generation

• …

• Form the basis of the deep learning field

• Too many use cases for us to cover in this class

• We will focus on neural networks used as classifiers

neurons
• The fundamental building blocks of neural

networks are called neurons

• Each has an activation function, modeled
loosely after neurons in the brain, which
“activate” when given enough stimulus

• The human brain is estimated to have more
than 10 billion neurons, to give you an idea

• Can view a neuron graphically as a “node” with
inputs, and weights

• The input to the activation function is the dot
product of the input and weights

perceptrons
• A perceptron is the simplest form of a neuron

• Activation function is the (Heaviside) unit
step function: either “on” or “off”

• It uses the following linear decision boundary:

sum = [b w1 w2] [
1.0
x
y]

o = f(sum) = {0, sum ≤ 0
1, sum > 0

1.0

x

y

b

w1

w2

o

sum

f(sum)

logistic regression: single layer NN
• Learning becomes a problem, because the unit

step function cannot be differentiated

• We need to somehow “smoothen” the
transition at

• One common activation function that does this is
the sigmoidal activation, shown to the right

• We can readily calculate the derivative

• This is just logistic regression!

• A neural network with a single layer and
sigmoidal activation is equivalent to logistic
regression

sum = 0

1.0

x

y

b

w1

w2

o

o = f(sum) =
1

1 + e−sum

sum

choices of activation functions
• The sigmoid function is computationally expensive,

though (recall its derivative is complicated)

• There are many other activation functions we can use
too. For example:

• tanh: Hyperbolic tangent, has steeper derivatives
than sigmoid

• ReLU: Much easier to compute, but the outputs can
be very large, and outputs below suffer from
the vanishing gradient problem

• Leaky	ReLU: Allows the output of ReLU below 0 to be
slightly negative, which helps prevent neurons from
falling into “dead states” from the vanishing gradient

x = 0

decision boundaries
• Basic classification problem for neural

networks:

• I have a set of labeled training data

• Learn a decision boundary that
separates the two classes of data

• Given a new point

• Classify it using the decision boundary
you learned

• Similar to other classifiers we looked at!

creating decisions with neurons
• The basic idea of neural networks is to add

layers of complexity on how decision boundaries
are defined

• A perceptron will induce a decision boundary
that is a straight line, i.e.,

• How do we learn the parameters , , and
 of this model?

• Instead of gradient descent, there is a
“special” algorithm for perceptrons

f(x, y) = {0, b + w1x + w2y ≤ 0
1, b + w1x + w2y > 0

w1 w2
b

x

y

non-linear decision boundaries
• The special perceptron training algorithm is

guaranteed to converge if a linear decision
boundary exists

• But if no linear boundary exists, the algorithm will
not converge, not even to an imperfect solution

• Perceptrons cannot learn non-linear decision
boundaries!

• To learn them with neural networks, we need two
things:

• Multiple layers of neurons

• Smoother activation functions

multi-layer NN structure and intuition
(a) The building block of neural networks (a single neuron) is like a

little logistic regression model:

1. Weighted summation of inputs:

2. Activation function:

(b) We can put many of these neurons together to form a feed-
forward neural network (or sometimes simply deep NN or
multilayer NN)

1. Each neuron computes weighted summation and activation
function

2. Stacking the neurons vertically forms a NN layer

3. Feeding the output of one layer as the input to the next layer
creates a deep NN (DNN)

n z =
n

∑
i=1

wixi

y = f(z) = f (
n

∑
i=1

wixi)

Figure from: Vieira, Sandra & Pinaya, Walter & Mechelli, Andrea. (2017). Using deep learning to
investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and

applications. Neuroscience & Biobehavioral Reviews. 74. 10.1016/j.neubiorev.2017.01.002.

multi-layer NN mathematical form
1. Notice that the weighted summation for neuron can be seen as a dot product:

2. When stacking neurons vertically the layer outputs can be seen as a matrix multiplication: 

3. Now the activation function is applied independently to each output: 

4. Thus we can write a DNN mathematically as function composition: 

j

zj =
n

∑
i=1

wixi = wT
j x

z1 = wT
1 x

z2 = wT
2 x

⋮ ⋮
zn = wT

n x

y1 = f(z1)
y2 = f(z2)
⋮ ⋮
yn = f(zn)

DNN(x) = f(W(3) f(W(2) f(W(1)x)

Layer 1

)

Layer 2

)

Output layer

 , or equivalently

z(1) = W(1)x
y(1) = f(z(1))
z(2) = W(2)y(1)

y(2) = f(z(2))
z(3) = W(3)y(2)

y(3) = f(z(3))

Alternating
between linear
transformation
and non-linear

activation
functions

, which can be written as z =

wT
1

wT
2

⋮
wT

n

x = Wx

, which can be written as y =

f(z1)
f(z2)

⋮
f(zn)

= f(z)

example of non-linear decision boundary
• Consider XOR classification function (i.e. “exclusive or”)

• Outputs 1 only when exactly one of and is 1

• Clearly not a linear decision boundary

• Can single layer NN handle this non-linear decision boundary problem?

• We will use simple two layer NN: 
 

• Solution: 

x1 x2

h = ReLU(Wx + c) = max{0,Wx + c}
y = wTh

W = [1 1
1 1], c = [0

−1], w = [1
−2]

https://www.deeplearningbook.org/contents/mlp.html

https://www.deeplearningbook.org/contents/mlp.html

XOR example walkthrough
• We can verify that this two-layer NN implements the XOR function:

• and : ,

• and : ,

• and : ,

• and : ,

x1 = 0 x2 = 0 h = ReLU ([1 1
1 1] [0

0] + [0
−1]) = ReLU ([0

−1]) = [0
0]

y = [1 −2] [0
0] = 0

x1 = 0 x2 = 1 h = ReLU ([1 1
1 1] [0

1] + [0
−1]) = ReLU ([1

0]) = [1
0] y = [1 −2] [1

0] = 1

x1 = 1 x2 = 0 h = ReLU ([1 1
1 1] [1

0] + [0
−1]) = ReLU ([1

0]) = [1
0] y = [1 −2] [1

0] = 1

x1 = 1 x2 = 1 h = ReLU ([1 1
1 1] [1

1] + [0
−1]) = ReLU ([2

1]) = [2
1] y = [1 −2] [2

1] = 0

architecture and parameters of NN
• Depth: # of layers

• Width: # of neurons per layer

• Activations: sigmoid, ReLU, tanh, etc.

Depth

Width 1

Width 2

neural network architectures
• A plethora of neural network architectures have been

proposed, for different applications

• Multi-layer Perceptron (MLP): Cascading perceptrons

• Recurrent Neural Networks (RNN): Sequential data
modeling

• Convolutional Neural Networks (CNN): Image
recognition

• Long Short Term Memory (LSTM): Memory cells with
“forgetting” factors

• Transformer (most recent), Gated Recurrent Units
(GRU), Hopfield Networks, Boltzmann Machines,
Generative Adversarial Networks (GAN), …

learning neural networks
Gradient descent

Stochastic Gradient Descent

• (Batch) Gradient descent (GD) can be computationally expensive for large datasets

• E.g., if we have 1M images, every update requires computing and summing gradients 

• If we add a normalizing constant of , we can view this update as taking the expected
gradient over all data samples: 

• Stochastic gradient descent (SGD) massively reduces the computational complexity by only
using 1 sample at each time step , : 
 

• Note that the variance of the steps is much higher but the cost is much lower

• Sometimes called amortized learning because it amortizes (spreads out) the computational
cost across many iterations

• Mini-batch gradient descent is actually used in practice, where often 64, 128 or 256
samples are used in each batch (bridging between SGD and GD)

106

w(t+1) = w(t) − α∑n=106

i=1 ∇F(xi, yi, w(t))

1/n

w(t+1) = w(t) − α 1
n ∑n

i=1 ∇F(xi, yi, w(t)) = w(t) − α𝔼[∇F(xi, yi, w(t))]

t (xt, yt)

w(t+1) = w(t) − α𝔼[∇F(xi, yi, w(t))] → w(t) − α∇F(xt, yt, w(t))

SGD for a sigmoidal neuron
• Letting be the label of datapoint , be the vector of weights, and

 be the datapoint vector, define the error of the output of a
specific input:

• For SGD, we only need the partial derivative for one specific input 
 

• Remember that when is a sigmoid

yi i w = (w1, w2, . . .)
xi = (xi1, xi2, . . .) E(xi)

E(xi) =
1
2 (yi − f(sum))2 =

1
2 (yi − f(wTxi))2

∂E(xi)
∂wj

=
∂E(xi)

∂f(sum)
⋅

∂f(sum)
∂sum

⋅
∂sum
∂wj

= − (yi − f(sum)) ⋅ f(sum)(1 − f(sum))

Denote as δ0 since same for every wj

⋅ xij

∂f(x)
∂x = f(x)(1 − f(x)) f

SGD for a sigmoidal neuron
• From previous slide: 

 

• Thus, our SGD update rule becomes: 
 

 
 

• Importantly, is reused for every , so we only have to compute it once for each

∂E(xi)
∂wj

=
∂E(xi)

∂f(sum)
⋅

∂f(sum)
∂sum

⋅
∂sum
∂wj

= − (yi − f(sum)) ⋅ f(sum)(1 − f(sum))

Denote as δ0 since same for every wj

⋅ xij

w(t+1)
j = w(t)

j + α ⋅ δ0 ⋅ xij

w(t+1) = w(t) + α ⋅ δ0 ⋅ xi

δ0 wj t

∑
j

wjxij

xi1

xi2

w1

w2 f ∑
j

wjxij yi

learning complex separators
• Let’s build up to more complex models by cascading neurons

• Learning the weights of the edges to the output neuron is easy — same as
learning for a single neuron

• But what about the weights on the inputs to the hidden layer?

x1

x2

updating the deltas
• Consider the network below. The output of this hidden layer is a vector . We can write the error of the network as:

• The change in output error with respect to is:

h

E(w) =
1
2

(yi − f(w1h1 + w2h2 + w3h3))2 =
1
2

(yi − f(w1 f(w1,1x1 + w2,1x2) + w2h2 + w3h3))2

w1,1

∂E
∂w1,1

=
∂E
∂h1

⋅
∂h1

∂sumh1

⋅
∂ sumh1

∂w1,1
= − δ0w1 ⋅ f′ (sumh1) ⋅ x1 = − δh1

⋅ x1

x1

x2

h1
w1

w1,1

w2,1

h2

h3 δ0 = − (yi − f(wTh)) ⋅ f(wTh)(1 − f(wTh))

h1 = f(w1,1x1 + w2,1x2) = f(sumh1
)

w2

w3

this term has the
same form as

what we derived for
a single neuron previously

essence of backpropagation
• Computing the gradient for each neuron gives

us the delta (,…) for the “upstream”
neurons, so we can keep pushing error back

• This gives us the essence of
backpropagation for training neural networks

• Forward pass: Compute outputs of each
neuron

• Backward pass: Push errors (deltas,
,…) weighted by edges to compute

how the weights change.

• Update: Apply stochastic gradient descent
to each weight. Repeat.

δ0, δh1

δ0, δh1

x1

x2

h1
W1

W1,1

W2,1

W2

W3

h2

h3

implementing neural networks
• sklearn now has a built in MLP module:

from	sklearn.neural_network	import	MLPClassifier	

mlp	=	MLPClassifier(hidden_layer_sizes=(13,13,13),max_iter=500)	

• For more complex neural networks, we typically leverage other machine
learning libraries/platforms:

• pytorch (https://pytorch.org/)

• tensorflow (https://www.tensorflow.org/)

• Both have Python interfaces

https://pytorch.org/
https://www.tensorflow.org/

Multi-layer Perceptron (MLP)
• Generally speaking, learns a function by training

on a dataset of input datapoints

• Each input datapoint’s dimension is , output dimension is

• MLP is a misnomer, because it uses anything except a
perceptron activation

• Architecture of an MLP:

• Input layer, where each of the input features is represented as
a neuron

• hidden layers, where each layer performs a linear
transformation followed by a non-linear activation

• Output which has one non-linear activation for each of the
output dimensions

f(⋅) : ℝn → ℝo

n o

n

l

o • Single hidden layer ()

• Single output ()

l = 1
o = 1

MLP in Python
• sklearn has a built in MLP (multi-layer perception) module

• Check out https://scikit-learn.org/stable/modules/generated/
sklearn.neural_network.MLPClassifier.html

from sklearn.neural_network import MLPClassifier

mlp = MLPClassifier(hidden_layer_sizes=(13,13,13), max_iter=500)

mlp.fit(train_X, train_y)

print(mlp.coefs_[i]) # weight matrix corresponding to layer i (i=0,…,3)

print(mlp.intercept_[i]) # bias vector for neurons in layer i+1 (i=0,…,2)

results = mlp.predict(test_X)

three hidden layers,
each with 13 neurons

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html

deep learning training
• With deep learning, we have non-linear

(and non-convex) error functions

• Therefore SGD is not guaranteed to
converge to the global optimum solution

• A lot of research is devoted to …

• Speeding up backpropagation, with
methods like the Adam optimizer, or
by distributing training across many
nodes

• Finding conditions for global solutions
in neural networks

