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neural networks
• Show up everywhere (including in pop culture)


• Machine translation


• Image recognition


• Video generation


• …


• Form the basis of the deep learning field


• Too many use cases for us to cover in this class


• We will focus on neural networks used as classifiers



neurons
• The fundamental building blocks of neural 

networks are called neurons 

• Each has an activation function, modeled 
loosely after neurons in the brain, which 
“activate” when given enough stimulus


• The human brain is estimated to have more 
than 10 billion neurons, to give you an idea


• Can view a neuron graphically as a “node” with 
inputs, and weights


• The input to the activation function is the dot 
product of the input and weights



perceptrons
• A perceptron is the simplest form of a neuron


• Activation function is the (Heaviside) unit 
step function: either “on” or “off”


• It uses the following linear decision boundary:
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logistic regression: single layer NN
• Learning becomes a problem, because the unit 

step function cannot be differentiated


• We need to somehow “smoothen” the 
transition at 


• One common activation function that does this is 
the sigmoidal activation, shown to the right


• We can readily calculate the derivative


• This is just logistic regression!


• A neural network with a single layer and 
sigmoidal activation is equivalent to logistic 
regression

sum = 0

1.0

x

y

b

w1

w2

o

o = f(sum) =
1

1 + e−sum

sum



choices of activation functions
• The sigmoid function is computationally expensive, 

though (recall its derivative is complicated)


• There are many other activation functions we can use 
too. For example:


• tanh: Hyperbolic tangent, has steeper derivatives 
than sigmoid


• ReLU: Much easier to compute, but the outputs can 
be very large, and outputs below  suffer from 
the vanishing gradient problem


• Leaky	ReLU: Allows the output of ReLU below 0 to be 
slightly negative, which helps prevent neurons from 
falling into “dead states” from the vanishing gradient

x = 0



decision boundaries
• Basic classification problem for neural 

networks:


• I have a set of labeled training data


• Learn a decision boundary that 
separates the two classes of data


• Given a new point


• Classify it using the decision boundary 
you learned


• Similar to other classifiers we looked at!



creating decisions with neurons
• The basic idea of neural networks is to add 

layers of complexity on how decision boundaries 
are defined


• A perceptron will induce a decision boundary 
that is a straight line, i.e.,





• How do we learn the parameters , , and 
 of this model?


• Instead of gradient descent, there is a 
“special” algorithm for perceptrons
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non-linear decision boundaries
• The special perceptron training algorithm is 

guaranteed to converge if a linear decision 
boundary exists


• But if no linear boundary exists, the algorithm will 
not converge, not even to an imperfect solution


• Perceptrons cannot learn non-linear decision 
boundaries!


• To learn them with neural networks, we need two 
things:


• Multiple layers of neurons


• Smoother activation functions



multi-layer NN structure and intuition
(a) The building block of neural networks (a single neuron) is like a 

little logistic regression model:


1. Weighted summation of  inputs:  


2. Activation function: 


(b) We can put many of these neurons together to form a feed-
forward neural network (or sometimes simply deep NN or 
multilayer NN) 

1. Each neuron computes weighted summation and activation 
function 

2. Stacking the neurons vertically forms a NN layer 

3. Feeding the output of one layer as the input to the next layer 
creates a deep NN (DNN)
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Figure from: Vieira, Sandra & Pinaya, Walter & Mechelli, Andrea. (2017). Using deep learning to 
investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and 

applications. Neuroscience & Biobehavioral Reviews. 74. 10.1016/j.neubiorev.2017.01.002. 



multi-layer NN mathematical form
1. Notice that the weighted summation for neuron  can be seen as a dot product:  




2. When stacking neurons vertically the layer outputs can be seen as a matrix multiplication: 

 


3. Now the activation function is applied independently to each output: 




4. Thus we can write a DNN mathematically as function composition: 

j

zj =
n

∑
i=1

wixi = wT
j x

z1 = wT
1 x

z2 = wT
2 x

⋮ ⋮
zn = wT

n x

y1 = f(z1)
y2 = f(z2)
⋮ ⋮
yn = f(zn)

DNN(x) = f(W(3) f(W(2) f(W(1)x)

Layer 1

)

Layer 2

)

Output layer
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example of non-linear decision boundary
• Consider XOR classification function (i.e. “exclusive or”) 


• Outputs 1 only when exactly one of  and  is 1


• Clearly not a linear decision boundary


• Can single layer NN handle this non-linear decision boundary problem?


• We will use simple two layer NN: 
 




• Solution: 

x1 x2

h = ReLU(Wx + c) = max{0,Wx + c}
y = wTh

W = [1 1
1 1], c = [ 0

−1], w = [ 1
−2]

https://www.deeplearningbook.org/contents/mlp.html

https://www.deeplearningbook.org/contents/mlp.html


XOR example walkthrough 
• We can verify that this two-layer NN implements the XOR function:


•  and : , 




•  and : , 


•  and : , 


•  and : , 
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architecture and parameters of NN
• Depth: # of layers


• Width: # of neurons per layer


• Activations: sigmoid, ReLU, tanh, etc.

Depth

Width 1

Width 2



neural network architectures
• A plethora of neural network architectures have been 

proposed, for different applications


• Multi-layer Perceptron (MLP): Cascading perceptrons


• Recurrent Neural Networks (RNN): Sequential data 
modeling


• Convolutional Neural Networks (CNN): Image 
recognition


• Long Short Term Memory (LSTM): Memory cells with 
“forgetting” factors


• Transformer (most recent), Gated Recurrent Units 
(GRU), Hopfield Networks, Boltzmann Machines, 
Generative Adversarial Networks (GAN), …



learning neural networks
Gradient descent

Stochastic Gradient Descent

• (Batch) Gradient descent (GD) can be computationally expensive for large datasets


• E.g., if we have 1M images, every update requires computing and summing  gradients 



• If we add a normalizing constant of , we can view this update as taking the expected 
gradient over all data samples: 




• Stochastic gradient descent (SGD) massively reduces the computational complexity by only 
using 1 sample at each time step , : 
 




• Note that the variance of the steps is much higher but the cost is much lower 

• Sometimes called amortized learning because it amortizes (spreads out) the computational 
cost across many iterations


• Mini-batch gradient descent is actually used in practice, where often 64, 128 or 256 
samples are used in each batch (bridging between SGD and GD)
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SGD for a sigmoidal neuron
• Letting  be the label of datapoint ,  be the vector of weights, and 

 be the datapoint vector, define the error  of the output of a 
specific input:





• For SGD, we only need the partial derivative for one specific input 
 




• Remember that  when  is a sigmoid

yi i w = (w1, w2, . . . )
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SGD for a sigmoidal neuron
• From previous slide: 

 




• Thus, our SGD update rule becomes: 
 

 
 




• Importantly,  is reused for every , so we only have to compute it once for each 
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learning complex separators
• Let’s build up to more complex models by cascading neurons


• Learning the weights of the edges to the output neuron is easy — same as 
learning for a single neuron


• But what about the weights on the inputs to the hidden layer?

x1

x2



updating the deltas
• Consider the network below. The output of this hidden layer is a vector . We can write the error of the network as:





• The change in output error with respect to  is:
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this term has the 
same form as 

what we derived for 
a single neuron previously



essence of backpropagation
• Computing the gradient for each neuron gives 

us the delta ( ,…) for the “upstream” 
neurons, so we can keep pushing error back


• This gives us the essence of 
backpropagation for training neural networks


• Forward pass: Compute outputs of each 
neuron


• Backward pass: Push errors (deltas, 
,…) weighted by edges to compute 

how the weights change.


• Update: Apply stochastic gradient descent 
to each weight. Repeat.
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implementing neural networks
• sklearn now has a built in MLP module:


from	sklearn.neural_network	import	MLPClassifier	

mlp	=	MLPClassifier(hidden_layer_sizes=(13,13,13),max_iter=500)	

• For more complex neural networks, we typically leverage other machine 
learning libraries/platforms:


• pytorch (https://pytorch.org/)


• tensorflow (https://www.tensorflow.org/)


• Both have Python interfaces

https://pytorch.org/
https://www.tensorflow.org/


Multi-layer Perceptron (MLP)
• Generally speaking, learns a function  by training 

on a dataset of input datapoints


• Each input datapoint’s dimension is , output dimension is 


• MLP is a misnomer, because it uses anything except a 
perceptron activation


• Architecture of an MLP:


• Input layer, where each of the  input features is represented as 
a neuron


•  hidden layers, where each layer performs a linear 
transformation followed by a non-linear activation


• Output which has one non-linear activation for each of the  
output dimensions

f( ⋅ ) : ℝn → ℝo

n o

n
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o • Single hidden layer ( )

• Single output ( )

l = 1
o = 1



MLP in Python
• sklearn has a built in MLP (multi-layer perception) module


• Check out https://scikit-learn.org/stable/modules/generated/
sklearn.neural_network.MLPClassifier.html  

from sklearn.neural_network import MLPClassifier

mlp = MLPClassifier(hidden_layer_sizes=(13,13,13), max_iter=500)

mlp.fit(train_X, train_y)

print(mlp.coefs_[i])  # weight matrix corresponding to layer i (i=0,…,3)

print(mlp.intercept_[i])  # bias vector for neurons in layer i+1 (i=0,…,2)

results = mlp.predict(test_X)

three hidden layers, 
each with 13 neurons

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html


deep learning training
• With deep learning, we have non-linear 

(and non-convex) error functions


• Therefore SGD is not guaranteed to 
converge to the global optimum solution


• A lot of research is devoted to …


• Speeding up backpropagation, with 
methods like the Adam optimizer, or 
by distributing training across many 
nodes


• Finding conditions for global solutions 
in neural networks


