9/14/2020 higher-order-functions

Higher Order Functions

You're used to seeing functions defined in Python:

In [2]: def meaningOfLife(x) :
return 42 * x

print (meaningOfLife(7))

294

But what you may not be used to is that functions in Python are just like any other piece of data. That means
that you can assign them to variables. And when you do, you can treat those variables as though they are just
accessing the function:

In [3]: f = meaningOfLife
print(£(7))

294

Because functions act like any other data in Python, we call them first class. This means that we can, for
example, pass them in as arguments to another function.

In [4]: def foo(fun, x)
return 2 * fun(x)

Note that foo here has behavior that changes based on what fun is. If we pass different functions in to
foo , it will do different things. We call foo a higher order function.

In [5]: foo(f, 7)

Out[5]: 588

In [6]: def other(x)
return 39 * x

foo(other, 7)

Out[6]: 546

localhost:8888/nbconvert/html/higher-order-functions.ipynb?download=false

1/9

9/14/2020 higher-order-functions

Filter

One of the best uses of higher order functions is to build generic helper functions that do different things based

on the function you pass in to it.
Suppose we want to write a filter function. that onlv keeps data within a certain ranae:
In [7]: import numpy as np
data = np.loadtxt('inp.txt')

print(len(data))

1000

In [8]: print(data[:101])

[52.157428 51.96758751 87.96353863 34.12761386 51.95632867 19.4177820

6
98.80807704 64.30580945 2.87186666 15.67694042]

In [9]: def simpleFilter(data)
res = []
for d in data :
if d >= 40 and d <= 60
res.append(d)
return res

In [10]: filtered = simpleFilter(data)
print(len(filtered))
print(filtered[:10])

198
[52.15742800208103, 51.967587510202094, 51.95632866658776,

559326164865, 48.88091472895692, 51.43408334637033]

But now we want to change the filter to keep data in a different range. It looks like we have to rewrite the

function:

localhost:8888/nbconvert/html/higher-order-functions.ipynb?download=false

45.852293669
658565, 50.3288024879517, 59.43570924203889, 50.450650101455984,

2/9

9/14/2020

In [11]:

higher-order-functions

def simpleFilter(data)
res = []
for d in data :
if d >= 60 and d <= 80
res.append(d)
return res

filtered = simpleFilter(data)
print(len(filtered))
print(filtered[:10])

199

[64.30580945497486, 66.8073779287948, 75.05560206968737, 60.33039319445
793, 64.22457990535646, 76.46131601487568, 69.2851653520291, 64.1867070
5576149, 72.68123303005324, 68.23044311467166]

One option is to add some additional parameters to our filter function. For example, we could add parameters
to define the lower and upper bounds of the range we want to filter:

In [12]:

In [13]:

def simpleFilter(data, lo, hi)
res = []
for d in data :
if d >= 1lo and d <= hi
res.append(d)
return res

filtered = simpleFilter(data, 40, 60)
print(len(filtered))
print(filtered[:10])

198

[52.15742800208103, 51.967587510202094, 51.95632866658776, 45.852293669
658565, 50.3288024879517, 59.43570924203889, 50.450650101455984, 57.843
559326164865, 48.88091472895692, 51.43408334637033]

filtered = simpleFilter(data, 60, 80)
print(len(filtered))
print(filtered[:101])

199
[64.30580945497486, 66.8073779287948, 75.05560206968737, 60.33039319445

793, 64.22457990535646, 76.46131601487568, 69.2851653520291, 64.1867070
5576149, 72.68123303005324, 68.23044311467166]

But that is not satisfying. What if we want to create a filter that does something entirely different, like keep

numbers that are outside a range, or keep numbers that are even? We cannot use simpleFilter anymore.

We would need to write something different each time we wanted to do a different kind of filtering.

So can we do better? What if we take advantage of higher order functions? Suppose we write a filter that keeps

data that pass a test and then pass the test to the filter? Let's write some simple tests:

localhost:8888/nbconvert/html/higher-order-functions.ipynb?download=false

3/9

9/14/2020

In [14]:

In [15]:

Oout[15]:

In [16]:

Out[1l6]:

In [17]:

In [18]:

Out[18]:

In

[19]:

Out[19]:

higher-order-functions

def inRange40 60(d)

return True if d >= 40 and d <= 60 else False

inRange40 60(45)

True

inRange40 60(85)

False

def inRange60 80(d)
return True if d >= 60 and d <=

inRange60 80(65)

True

inRange60 80(85)

False

80 else False

Now we can write a filter that accepts atest p (p here stands for predicate):

In

In

In

In

[20]:

[21]:

[22]:

[23]:

def higherOrderFilter(data, p)
res = []
for d in data :
if p(d)
res.append(d)
return res

filteredl = higherOrderFilter(data,
print(len(filteredl))

198

filtered2 = higherOrderFilter (data,
print(len(filtered2))

199

def outOfRange(d) :
return True if d < 40 or d > 60

filtered3 = higherOrderFilter (data,
print(len(filtered3))

802

localhost:8888/nbconvert/html/higher-order-functions.ipynb?download=false

inRange40 60)

inRange60_ 80)

else False

outOfRange)

4/9

9/14/2020 higher-order-functions

Returning functions from functions

Now we have a completely generic function. But suppose we want to simplify the process of creating tests?
Instead of defining a new function from each test, what if we can write a function that defines new functions for
us? To do this, we will take advantage of returning functions from functions:

In [24]: def createRangeP(lo, hi) :
def p(d)
return True if d >= lo and d <= hi else False
return p

It can be a little hard to understand what createRangeP is doing, so let's look at a couple of examples:

In [25]: pl = createRangeP (40, 60)

p2 = createRangeP (60, 80)
In [26]: pl(45)
Out[26]: True
In [27]: pl(65)
Out[27]: False
In [28]: p2(45)
Out[28]: False

In [29]: p2(65)

Out[29]: True

Think about what happens when createRangeP runs. When it does, it defines a new function called p . That
function has specific values for 1o and hi (because we passed them into createRangeP ,so p is
specialized for that particular range. We then return this newly created function. Note that we have not actually
run p yet. Instead, p is now a function that runs a test on its input argument, x . We then run it later, as we
did above.

We can now use the newly created functions in our filter:

In [30]: len(higherOrderFilter(data, pl))

Out[30]: 198

localhost:8888/nbconvert/html/higher-order-functions.ipynb?download=false 5/9

9/14/2020 higher-order-functions

In [31]: len(higherOrderFilter(data, p2))

Out[31]: 199

We can also skip the step of assigning the result of createRangeP to a variable:

In [32]: len(higherOrderFilter(data, createRangeP (45, 75)))

Oout[32]1: 309

In class, we looked at a couple of other uses of returning functions from a function. For example, here is a
function that takes in two tests (funl and fun2) and returns a new test that returns true if both funl and
fun2 pass:

In [33]: def createAnd(funl, fun2)
def p(x)
return funl(x) and fun2(x)
return p

def keepEven(x)
return (int(x) % 2 == 0)

andP = createAnd(keepEven, createRangeP (45, 75))
len(higherOrderFilter(data, andP))

Out[33]: 148

As promised, here's a version of createAnd that takes in a whole list of functions and creates a new test that
returns true if all of the functions are true. And as a bonus, a createOr :

In [34]: def createAndL(funcList) :
def p(x)
res = True
for f in funcList
res = res and f(x)
return res
return p

def createOrL(funcList)
def p(x)
res = False
for £ in funcList
res = res or f(x)
return res
return p

Map and Reduce

localhost:8888/nbconvert/html/higher-order-functions.ipynb?download=false 6/9

9/14/2020 higher-order-functions

Map and reduce are two of the most common higher-order functions. Map takes a list and a function and
returns a new list where each element of the new list is an element from the first list with the function applied to
it:

In [35]: def myMap(inp, f) :
res = []
for i in inp
res.append(£f(1i))
return res

In [36]: def sg(x) : return x * x
In [37]: small = [5, 1, 3, 7, 4, 8, 9]

In [38]: myMap(small, sq)

out[38]: [25, 1, 9, 49, 16, 64, 81]

Instead of defining a new function every time we want to use it in a higher order function, we can use a lambda
to define a function at the same time we need it:

In [39]: squared = myMap(small, lambda x : x * X)
print (squared)

[25, 1, 9, 49, 16, 64, 81]

Reduce takes a list and combines together all the elements by calling a function £ over and over that
combines the numbers (e.g., adds them together):

In [40]: def myReduce(inp, f, start) :# f(curr, i) -> curr'
curr = start
for i in inp
curr = f(curr, i)
return curr

In [41]: sums = myReduce(small, lambda curr, i : curr + i, 0)
print (sums)
37

In [42]: product = myReduce(small, lambda curr, i: curr*i, 1)

print(small)
print (product)

[51 1’ 3’ 7’ 4’ 8’ 9]
30240

localhost:8888/nbconvert/html/higher-order-functions.ipynb?download=false 7/9

9/14/2020

higher-order-functions

In [43]: product = myReduce(small, lambda curr, i:

print(small)
print (product)

[5, 1, 3, 7, 4, 8, 9]
9.642857142857142

In [44]: def average(inp)

return (myReduce(inp, lambda curr, i

In [45]: average(small)

Out[45]: 5.285714285714286

i / curr,

curr + i,

We can combine map and reduce to compute more complicated things:

In [46]: def variance(inp) :
avg = average(inp)

diffs = myMap(inp, lambda x : x - avg)
sq _diffs = myMap(diffs, lambda x : x *

return average(sq diffs)

In [47]: variance(small)

Out[47]: 7.061224489795919

In [48]: variance(data)

Out[48]: 831.4194789188293

List comprehensions

If you read a lot of Python code, you won't often see people using map and filter , because the same thing
can be done more concisely using list comprehensions:

In [49]: [sq(d) for d in data][:10]

Out[49]: [2720.3972957922665,
2700.6301516305125,
7737.584127983336,
1164.6940275730635,
2699.4600885104887,
377.0502601833694,
9763.036087880562,
4135.237129659535,
8.247618136083487,
245.76646092950406]

localhost:8888/nbconvert/html/higher-order-functions.ipynb?download=false

X)

1)

0) / len(inp))

8/9

9/14/2020 higher-order-functions

Read this "inside out": for each d in data, apply the function sq(d) , and put the results into an output list
(note that data itself does not change).

We can also combine this with filter:

In [50]: [sq(d) for d in data if keepEven(d)][:10]

Out[50]: [2720.3972957922665,
1164.6940275730635,
9763.036087880562,
4135.237129659535,
8.247618136083487,
4463.22574572082,
3639.756342997896,
694.6542710674776,
8244.861709563314,
2532.988359871253]

Which now says: for each d in data, if keepEven(d) is true, compute sq(d) and put the result in an output
list.

In []:

localhost:8888/nbconvert/html/higher-order-functions.ipynb?download=false 9/9

