
8/25/2021 python-basics

localhost:8888/nbconvert/html/python-basics.ipynb?download=false 1/8

Python for C programmers
The basics of Python are fairly simple to learn, if you already know how another structured language (like C)
works. So we will walk through these basics here. This is only intended to be a quick overview, not a deep dive
into how Python works. We will spend more time talking about certain topics (such as higher order functions) in
later lectures, but for more details about the "basics," please talk to the instructors or the TA, or take a look at
the Python reference pages (https://docs.python.org/3.6/reference/index.html)

One big difference between C and Python is that C is compiled while Python is interpreted. This means that to
run a C program, you first have to compile it (e.g., with gcc) and then run it; but once you compile the
program, you have a standalone executable (e.g., a.out). With a Python program, you do not have to compile
the program but to run the program you need to run it in the Python interpreter (e.g., > python hw0.py)

In practice, at least for this class, this distinction will not really matter (it can matter more once you get to long-
running programs that operate over large amounts of data)

Variables and Types
Perhaps the biggest difference between C and Python is that C variables are statically typed -- you need to say
whether a variable x is an int or a float right up front. In Python, you don't:

In [1]: x = 1
type(x)

Note that this means that we don't need to "declare" variables -- we can just use them whenever we need to.

What's interesting about Python, though, is that while we say the type of x is an int , what's really
happening is that x is a reference to an integer object, which happes to have the value 1. x itself doesn't
have a fixed type. We can re-assign it:

In [2]: x = 1.2
type(x)

You can even make x a string:

In [3]: x = "hello"
type(x)

Out[1]: int

Out[2]: float

Out[3]: str

https://docs.python.org/3.6/reference/index.html

8/25/2021 python-basics

localhost:8888/nbconvert/html/python-basics.ipynb?download=false 2/8

Python does its type checking dynamically. It will not tell you until you try to do something with a variable
whether the operation is legal or not:

In [4]: len(x) #this will work because x is a string

In [5]: x = 1.2
len(x) #what will happen here?

Python will also perform type coercion: when it makes sense, it will convert an object from one type to another
to let an operation work:

In [6]: p = 1
print (type(p))

q = .2
print (type(q))

r = p + q
print (type(r))
print ("value of r: {}".format(r)) #compare this to printf!

Out[4]: 5

TypeError Traceback (most recent call l
ast)
<ipython-input-5-31756c9ed6f5> in <module>
 1 x = 1.2
----> 2 len(x) #what will happen here?

TypeError: object of type 'float' has no len()

<class 'int'>
<class 'float'>
<class 'float'>
value of r: 1.2

8/25/2021 python-basics

localhost:8888/nbconvert/html/python-basics.ipynb?download=false 3/8

Control statements
Control statements in Python look a lot like their counterparts in C: if statements, while loops, for
loops. The biggest difference is that in Python whitespace matters. We do not use { and } to separate
blocks. Instead, we use colons (:) to mark the beginning of a block and indentation to mark what is in the
block.

If Statements

Here is the equivalent of the C statement:

if (r < 3) printf("x\n"); else printf("y\n");

In [7]: if r < 3:
 print ("x")
else:
 print ("y")

And an example of multiline blocks:

In [8]: if r < 1:
 print ("x")
 print ("less than 1")
elif r < 2:
 print ("y")
 print ("less than 2")
elif r < 3:
 print ("z")
 print ("less than 3")
else:
 print ("w")
 print ("otherwise!")

While Loops

while loops are similar:

x

y
less than 2

8/25/2021 python-basics

localhost:8888/nbconvert/html/python-basics.ipynb?download=false 4/8

In [9]: x = 1
y = 1
while (x <= 10) :
 y *= x
 x += 1

print (y)

In [10]: x = 1
y = 1
while (x <= 10) :
 if x % 5 == 0 :
 y *= x
 x += 1

print (y)

For Loops

for loops are a little trickier. They do not take the same form as C for loops. Instead, for loops iterate over
collections in Python (e.g., lists). These are more like foreach loops that you might see in other languages (or
the for (x : list) construct you see in Java). So let's start by talking about lists:

In [11]: data = [1, 4, 9, 0, 4, 2, 6, 1, 2, 8, 4, 5, 0, 7]
print (data)

In [12]: hist = 5 * [0]
print (hist)

Lists work like a combination of arrays in C (you can access them using []) and lists (you can append
elements, remove elements, etc.) We will talk more about lists in our lecture on data structures.

In [13]: length = len(data)
print ("data length: {} data[{}] = {}".format(length, length - 1, data[l
ength - 1]))

3628800

50

[1, 4, 9, 0, 4, 2, 6, 1, 2, 8, 4, 5, 0, 7]

[0, 0, 0, 0, 0]

data length: 14 data[13] = 7

8/25/2021 python-basics

localhost:8888/nbconvert/html/python-basics.ipynb?download=false 5/8

In [14]: data.append(8)
length = len(data)
print ("data length: {} data[{}] = {}".format(length, length - 1, data[l
ength - 1]))

You can then iterate over the elements of the list:

In [15]: for d in data :
 print (d)

In [16]: for d in data :
 hist[d // 2] += 1
print (hist)

How do you write a for loop with an index variable that counts from 0 to 4, like you might in C? for (int
i = 0; i < 5; i++)

Use the standard function range , which lets you count from a lower bound to an upper bound (with an
optional step):

In [17]: r = range(0,5)
print (r)

data length: 15 data[14] = 8

1
4
9
0
4
2
6
1
2
8
4
5
0
7
8

[4, 2, 4, 2, 3]

range(0, 5)

8/25/2021 python-basics

localhost:8888/nbconvert/html/python-basics.ipynb?download=false 6/8

In [18]: for i in range(0, 5):
 print (i)

You can also make your range command add a stride that will make it skip numbers:

In [19]: r = range(0, len(data))
for i in r :
 print(i)

r2 = range(0, len(data), 2)
for i in r2 :
 print(i)

Which means that you can use this range to print every other element of data :

0
1
2
3
4

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
0
2
4
6
8
10
12
14

8/25/2021 python-basics

localhost:8888/nbconvert/html/python-basics.ipynb?download=false 7/8

In [20]: for i in r2 :
 print (data[i])

But there's a better way to do this! You can use slicing to generate a version of data that only contains every
other element. This notation may look familiar to you from Matlab, and we will talk about it more when we
discuss data structures

In [21]: data2 = data[::2] #same as data2 = data[0:len(data):2]
print(data2)

Functions
Basic functions in Python work a lot like functions in C. The key differences are:

1. You don't have to specify a return type. In fact, you can return more than one thing!
2. You don't have to specify the types of the arguments
3. When calling functions, you can name the arguments (and thus change the order of the call)

In [22]: def foo(x) :
 return x * 2

print (foo(10))

In [23]: def foo2(x) :
 return x * 2, x * 4

(a, b) = foo2(10)
print (a, b)

1
9
4
6
2
4
0
8

[1, 9, 4, 6, 2, 4, 0, 8]

20

20 40

8/25/2021 python-basics

localhost:8888/nbconvert/html/python-basics.ipynb?download=false 8/8

In [24]: def foo3(x, y) :
 return 2 * x + y

print (foo3(7, 10))
print (foo3(y = 10, x = 7))

There are more complicated things you can do with functions -- nested functions, functions as arguments,
functions as return values, etc. We will look at these in the lecture when we talk about Map and Reduce

In []:

24
24

