
ECE 20875

Python for Data Science

n-grams and basic natural
language processing

Chris Brinton, Qiang Qiu, and Mahsa Ghasemi

(Adapted from material developed by Profs. Milind Kulkarni,
Stanley Chan, Chris Brinton, David Inouye, Qiang Qiu)

text data analysis
• Written text is often treated as a form of data for

analysis

• Some types of analyses:

• Measuring similarity between documents

• Extracting topics from documents

• Finding the most frequently occurring words

• Quantifying the importance of phrases

• Most of these involve breaking up documents
into words or “n-grams”

Popular example: Latent
Dirichlet Allocation (LDA)

documents: combinations of topics

topics: combinations of words

n-grams
• n-grams break up a sentence into overlapping subsequences of length n

• n typically refers to words or characters (though it could also be e.g., syllables)

• Unigrams (n=1), bigrams (n=2), trigrams (n=3), …

• Consider the string: “I	saw	a	cat”

• Word-based 3-grams:

“I	saw	a”,	“saw	a	cat”

• Character-based 3-grams:

“I⎵s”,	“⎵sa”,	“saw”,	“aw⎵”,	“w⎵a”,	“⎵a⎵”,	“a⎵c”,	“⎵ca”,	“cat”

word-based n-gram extraction

bag-of-words
• The same n-gram can appear multiple times in a string

• This indicates a higher frequency

• Generally we only care about order within an n-gram, not between n-
grams

• Bag-of-words model: Order between words (more generally, between n-
grams) in a document is not considered

• We call it “bag-of-words,” but it’s really “bag-of-n-grams”

• For example, consider this string: “wan	can	cup”

• bag-of-words of character-based 3-grams:

wan	:	1			an⎵	:	2			n⎵c	:	2 

⎵ca	:	1			can	:	1			⎵cu	:	1			cup	:	1

• Where would the 0s come from?

• We often compare documents by their
bag-of-words representations

language classification
• Consider the commonly encountered language classification problem, i.e.,

identifying the language in which a document is written

• We could consider the n-grams of characters contained in the document

• Documents written in a particular language
will tend to have similar n-gram frequencies
(e.g., “the” in English vs. “el” in Spanish)

• We can compare a document of interest to
known n-gram language frequencies

• Can visualize this by building a histogram of the n-grams

• Treat each n-gram across the documents as a separate (categorical) bucket

unigram bigram trigram

n-gram histogram examples
n-grams in French document n-grams in Spanish document

n-grams in English document n-grams in mystery document

• How would we quantify
which language is
“closest” to the
mystery document?

• We could use the MSE
between the n-gram
vectors

n-gram importance
• How do we quantify the importance of an n-gram in a document?

• One possibility: Count the number of times it occurs,
i.e., its frequency

• More frequently occurring should be more important

• But what about common words like “a”, “as”, “is”, …?

• These specific examples are stopwords, which we should probably remove from the
analysis of “importance” anyway

• But many high frequency non-stopwords will not provide much information in a given
context (e.g., “Disney” in a collection of documents about “Disney	World”)

• Need to somehow measure how “unique” the n-gram is across documents

tf-idf score
• A statistic that quantifies this intuition is the term

frequency-inverse document frequency or tf-idf score

• One of the most popular schemes used today

• Let be a term (n-gram), be a document, and be a
corpus (collection of documents) under consideration

• The tf-idf score of term in document with respect to
corpus is

• Many different methods for quantifying and

t d D

t d
D

𝚝𝚏𝚒𝚍𝚏(t, d, D) = 𝚝𝚏(t, d) ⋅ 𝚒𝚍𝚏(t, D)

𝚝𝚏 𝚒𝚍𝚏

Corpus

term document

Here we we will assume terms
are words, but more generally

they can be n-grams

tf-idf score
• Term frequency : Typically the fraction of terms in document

which are term

• Letting be the number of occurrences of in ,

• Inverse document frequency : A measure of how
rare term is across the corpus (i.e., how much information
it provides about a document it appears in)

• Letting be the number of documents in the corpus and be
the number of documents where occurs, it is typically quantified as

𝚝𝚏(t, d) d
t

ft,d t d

𝚝𝚏(t, d) =
ft,d

∑t′￼
ft′￼,d

𝚒𝚍𝚏(t, D)
t D

N = |D | nt
t

𝚒𝚍𝚏(t, D) = log10 (nt

N)
−1

= log10
N
nt

Why log?

example
Dataset: Take the following four strings to be (very small) documents
comprising a (very small) corpus:

1. “The	sky	is	blue.”

2. “The	sun	is	bright	today.”

3. “The	sun	in	the	sky	is	bright.”

4. “We	can	see	the	shining	sun,	the	bright	sun.”

Task: Filter out obvious stopwords, and determine the tf-idf scores of each
term in each document.

solution
• After stopword filtering: (1) “sky	blue”, (2) “sun	bright	today”, (3) “sun	
sky	bright”, (4) “can	see	shining	sun	bright	sun”

• TF: Find doc-word matrix, then normalize rows to sum to 1

blue bright can see shining sky sun today

1 1 0 0 0 0 1 0 0

2 0 1 0 0 0 0 1 1

3 0 1 0 0 0 1 1 0

4 0 1 1 1 1 0 2 0

blue bright can see shining sky sun today

1 1/2 0 0 0 0 1/2 0 0

2 0 1/3 0 0 0 0 1/3 1/3

3 0 1/3 0 0 0 1/3 1/3 0

4 0 1/6 1/6 1/6 1/6 0 1/3 0

ft,d 𝚝𝚏(t, d) =
ft,d

∑t′￼
ft′￼,d

solution
• IDF: Find number of documents each word occurs in, then compute formula

blue bright can see shining sky sun today

1 1 0 0 0 0 1 0 0

2 0 1 0 0 0 0 1 1

3 0 1 0 0 0 1 1 0

4 0 1 1 1 1 0 2 0

n_t 1 3 1 1 1 2 3 1

blue bright can see shining sky sun today

0.602 0.125 0.602 0.602 0.602 0.301 0.125 0.602

ft,d 𝚒𝚍𝚏(t, D) = log10
N
nt

log10
4
1

= 0.602
N = 4

log10
4
3

= 0.125

solution

blue bright can see shining sky sun today

1 0.301 0 0 0 0 0.151 0 0

2 0 0.0417 0 0 0 0 0.0417 0.201

3 0 0.0417 0 0 0 0.100 0.0417 0

4 0 0.0209 0.100 0.100 0.100 0 0.0417 0

• TF-IDF: Multiply TF and IDF scores,
use to rank importance of words
within documents

• Most important word for each
document is highlighted

blue bright can see shining sky sun today

1 1/2 0 0 0 0 1/2 0 0

2 0 1/3 0 0 0 0 1/3 1/3

3 0 1/3 0 0 0 1/3 1/3 0

4 0 1/6 1/6 1/6 1/6 0 1/3 0

blue bright can see shining sky sun today

0.602 0.125 0.602 0.602 0.602 0.301 0.125 0.602x

𝚒𝚍𝚏(t, D)
𝚝𝚏(t, d)

𝚝𝚏𝚒𝚍𝚏(t, d, D) = 𝚝𝚏(t, d) ⋅ 𝚒𝚍𝚏(t, D)

text preprocessing
• Typically apply a series of preprocessing steps prior to analysis

• Mostly using Python’s nltk (natural language processing toolkit) library

1. Tokenization

• Break text into tokens, e.g., n-grams of words
(nltk.word_tokenize(string) or string.split())

• Remove non-word characters, e.g., punctuation

2. Stopword removal

• Make words lowercase (s.lower())

• Remove common word tokens (stopwords.words(‘english’))

MacHine	LeArning.	
it	is	Important!

[MacHine,	LeArning,	
it,	is,	Important]

[machine,	learning,	
important]

tokenization

stopword

removal

text preprocessing
3. Stemming / Lemmatizing

• Stemming reduces inflected words to their word stem (e.g.,
studies,	studying	->	studi)

• Lemmatization maps words to their dictionary form,
representing them as words (e.g., studies,	studying	—>	
study)

• Requires part-of-speech (POS) specification

• Lemmatization is more complex (we need to tag a words
POS to get the right result), but preferred when possible (e.g.,
on the right, the stemmed version of important is import)

• from	nltk.stem	import	PorterStemmer,																												
WordNetLemmatizer

stemming

[machine,	learning,	
important]

[machin,	learn,	
import]

natural language processing
• What we have been studying are specific methods in

natural language processing, or NLP

• NLP is concerned with how to automatically analyze
large corpuses of text

• Two main classes of NLP: rules-based and statistical

• tf-idf is a simple (yet widely used) statistical technique

• Today’s innovations are largely in the statistical
category, leveraging machine learning

• Key is building knowledge representations

natural language processing
• Some common functions of NLP

• Machine translation: Translating between
languages (e.g., Google translate)

• Speech recognition: Determine the textual
representation of an audio track (e.g., Siri)

• Document summarization: Determine an
effective summary of a document (e.g., Watson)

• All of these are constantly being innovated with
new NLP algorithms

