
ECE 20875
Python for Data Science

clustering

Chris Brinton, Qiang Qiu, and Mahsa Ghasemi

(Adapted from material developed by Profs. Milind Kulkarni, 
Stanley Chan, Chris Brinton, David Inouye, Qiang Qiu)



what is clustering? 
• Given a set of data points, group them into clusters, 

i.e., subsets of the data set that are “similar”


• What “similar” means depends on what clustering 
algorithm you use


• K-means: Points are “near” each other


• Gaussian mixture models: Points come from same 
Gaussian distribution


• Basic goal: Identify structure in data without any labels


• Lack of labels for the data points makes this 
unsupervised learning 

• We will discuss supervised learning more again 
later (where have we seen it already?)



clustering algorithms
• There are probably hundreds of published algorithms for 

clustering datasets


• Clustering algorithms fall into a few general categories:


• Hierarchical: Group datapoints together based on how 
“close” they are to one another


• Centroid-based: Find center points that can be interpreted 
as cluster centers, and assign each point to one center


• Distribution-based: Datapoints are grouped based on their 
likelihood of belonging to the same probability distribution


• Density-based: Clusters are defined as areas of higher 
density in the dataset



two approaches
• We will study two of the most popular clustering methods: K-means and GMMs 

 
 
 
 
 
 
 
 

• Despite their different flavors, we will also see that both models …


• require an initial assumption about the number of clusters


• use iterative algorithms to find clusters: Form an initial guess, and refine it

• Gaussian Mixture Models (GMMs) 

• Distribution-based


• Requires having a model in mind


• Can find interesting structure in data 
(based on how complex the model is)

• K-means 

• Centroid-based


• No model required


• Can only find “simple” structure in 
data (points that are close together)



k-means clustering
• Consider a dataset consisting of  points 

, where  is the feature vector 
representation of observation  (and there is no )


• With k-means, we seek to divide the dataset into  
clusters , where each cluster  is 
defined by a centroid 


•  is the mean of all the datapoints in 


• Formally, we seek to assign each  to a cluster  
according to the following optimization problem:


n
x1, x2, . . . , xn xj

j yj

k
S1, S2, . . . , Sk Si

μi

μi Si

xj Si

arg min
S1,...,Sk

k

∑
i=1

∑
x∈Si

∥x − μi∥2 Hard to solve:  depends on 
, and  depends on !

μi
Si Si μi



k-means algorithm
• Start out by initializing  “centroids” 

that define the clusters


• Could just be random choice

k



k-means algorithm
• Start out by initializing  “centroids” 

that define the clusters


• Assignment step: Assign each data 
point to a cluster


• Each data point is assigned to the 
cluster it is closest to


• According to Euclidean distance, 
i.e.,  

k

arg min
i

∥xj − μi∥



• Start out by initializing  “centroids” that define 
the clusters


• Assignment step: Assign each data point to a 
cluster


• Update step: Move each centroid to the 
“middle” of its cluster


• Compute the average position of the data 
points


• Compute mean according to


k

μi =
1

|Si | ∑
x∈Si

x

k-means algorithm



• Start out by initializing  “centroids” 
that define the clusters


• Assignment step: Assign each data 
point to a cluster


• Update step: Move each centroid to 
the “middle” of its cluster


• Repeat assignment step with new 
centroid locations

k

k-means algorithm



k-means algorithm
• Start out by initializing  “centroids” that 

define the clusters


• Assignment step: Assign each data 
point to a cluster


• Update step: Move each centroid to the 
“middle” of its cluster


• Repeat assignment step with new 
centroid locations


• Repeat update step with new clusters

k



k-means algorithm summary
• Start out by initializing  “centroids” 

that define the clusters


• Assignment step: Assign each data 
point to a cluster


• Update step: Move each centroid to 
the “middle” of its cluster


• Repeat assignment, update, 
assignment, update, … until 
convergence

k



implementation and considerations
• In Python: KMeans class from sklearn.cluster	

(https://scikit-learn.org/stable/modules/generated/
sklearn.cluster.KMeans.html)


kmeans = KMeans(n_clusters, n_init, 
random_state, …)   #kmeans object


kmeans.fit(X)   #fit kmeans to X


kmeans.labels_  #Cluster assignments of X 


kmeans.cluster_centers_  #Cluster centers


• A simpler approach than GMMs (which we will see 
next): No need for an a priori model


• But is less sophisticated than GMMs: Clusters that k-
means finds have limitations

Iteration 1 Iteration 2

Iteration 3 Iteration 4

Iteration 5

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html


choosing  k
• How do we know how many centroids to start with?


• One possibility: Can pick a  and see how far points in a 
cluster are from their centroid


• If there are too few centroids, average distance is high


• As seen on the right, as  increases, the distance drops


• But drop “slows down” after a while


• Knee or elbow method: Look for the “knee” of the curve


• Can also use cross validation!


• Too many clusters: New data points are not well 
represented by the clusters

k

k



gaussian mixture models
• A Gaussian mixture model (GMM) with  components (clusters) is a probability 

distribution that is a weighted sum of  Gaussians:

k

k

pX(x) =
k

∑
i=1

πi𝒩(x |μi, σ2
i )

•  : mean of th Gaussian


•  : variance of th Gaussian


•  : weight of th Gaussian 

Note: ,  (why?)

μi i

σ2
i i

πi i

πi ≥ 0 ∑
i

πi = 1

k = 2

𝒩(x |μ1, σ2
1)

𝒩(x |μ2, σ2
2)

pX(x) = π1𝒩(x |μ1, σ2
1) + π2𝒩(x |μ2, σ2

2)

x



gaussian mixture models
pX(x) =

k

∑
i=1

πi𝒩(x |μi, σ2
i )• Using GMMs for clustering:


• Given  data points , how do 
we determine what the parameters of the 
 Gaussians are that best fit the data?


• The parameters are the 


• Intuition:


• Move the Gaussians around until their 
sum best fits the red curve (i.e., the 
dataset)

N x1, . . . , xN

k

πi, μi, σi

k = 2

𝒩(x |μ1, σ2
1)

𝒩(x |μ2, σ2
2)

pX(x) = π1𝒩(x |μ1, σ2
1) + π2𝒩(x |μ2, σ2

2)

x



expectation maximization
• Like with KMeans, we will use an iterative approach to fit the Gaussian parameters


• Expectation maximization is an iterative approach to finding the                                                                        
parameters of a statistical model, where the model depends on                                                                            
unobserved, latent variables 

• Here, our latent variables are cluster labels (i.e., which of the k                                                                              
Gaussians each point belongs to) 

• Start with a random guess for the Gaussian parameters


• Compute expectation (E-step)


• Given the current parameters, what is the likelihood that each point comes from a particular Gaussian?


• Perform maximization (M-step)


• Given these new likelihoods (which are essentially weights), update the means, (co)variances, and 
weights of the Gaussians using weighted averages



E step
• For each data point , compute the likelihood that the data point comes from 

Gaussian i’s random variable :


 


•   is the (conditional) probability of observing  from 


•  is the (unconditional) probability of observing the Gaussian 


•  is the (unconditional) probability of observing  (from any Gaussian)

xj
Gi

γij = P(Gi |xj) =
P(xj |Gi)P(Gi)

P(xj)

P(xj |Gi) xj Gi

P(Gi) Gi

P(xj) xj

Bayes’ Theorem



• For each data point , compute the likelihood that the data point comes 
from Gaussian i’s random variable :


 

xj
Gi

γij = P(Gi |xj) =
P(xj |Gi)P(Gi)

P(xj)

E step

Compute straight 
from Gaussian

P(xj |G1)P(G1)

P(xj |G2)P(G2)

 + P(xj) = P(xj |G1)P(G1) P(xj |G2)P(G2)

Weight of this Gaussian

Estimate from overall distribution 
(normalizes so probabilities sum to 1)

xj



E step
• For each data point , compute the likelihood that the data point comes 

from Gaussian i’s random variable :


 


                                   

xj
Gi

γij = P(Gi |xj) =
P(xj |Gi)P(Gi)

P(xj)

=
πi𝒩(xj |μi, σ2

i )

∑k
g=1 πg𝒩(xj |μg, σ2

g)

xj



M step
• Now that we have the likelihoods for each datapoint (how likely each is to 

come from each Gaussian), we re-estimate the parameters of each 
Gaussian  using those weights:i

Ni =
N

∑
j=1

γij π′￼i =
Ni

N
μ′￼i =

∑N
j=1 γijxj

Ni
σ′￼2

i =
∑N

j=1 γij(xj − μ′￼i)2

Ni

• These expressions are the maximum likelihood estimators for Gaussian 
distributions


• Derived by setting the derivative of  to 0 for each parameterlog∏
j

pX(xj)



• Now that we have the likelihoods for each datapoint (how likely each is to 
come from each Gaussian), we re-estimate the parameters of each 
Gaussian  using those weights:i

Total likelihood of points 
in this Gaussian

Proportion of points 
that come from 
this Gaussian 

Weighted mean of 
this Gaussian

Weighted variance of this 
Gaussian. Note that this 
uses the updated mean!

M step

Ni =
N

∑
j=1

γij π′￼i =
Ni

N
μ′￼i =

∑N
j=1 γijxj

Ni
σ′￼2

i =
∑N

j=1 γij(xj − μ′￼i)2

Ni



learning GMMs
• Repeat E and M steps until convergence


• Note that what you converge to can be sensitive to the 
initial estimates (like KMeans)


• When you are done, you have multiple Gaussians defined 
that “fit” the data you have


• This is a useful starting point for building Naïve Bayes 
classifiers!


• We will discuss this later


• In Python: GaussianMixture class from 
sklearn.mixture	(https://scikit-learn.org/stable/
modules/generated/sklearn.mixture.GaussianMixture.html)

https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html


determining convergence
• We continue alternating between E and M steps, but how do we know when 

the algorithm has converged?


• We will use the log likelihood of the data given parameters: 
 




• When the log-likelihood stops changing significantly, we can stop EM


• Formally, we can stop once the change in  is below a certain tolerance 
tol, e.g., tol = 1 

𝚕𝚘𝚐𝚕 = log
N

∏
j=1

pX(xj) =
N

∑
j=1

log pX(xj) =
N

∑
j=1

log
k

∑
i=1

πi𝒩(xj |μi, σ2
i )

𝚕𝚘𝚐𝚕



numerical example
Consider a (very, very small) dataset of five points 

. Find the GMM 
for this dataset with  clusters.


Assume an initialization of ,  (i.e., chosen randomly), 
, , , and . Also assume tol = 1.

x1 = 12.14, x2 = 4.55, x3 = 2.57, x4 = 12.19, x5 = 12.78
k = 2

μ1 = 2.57 μ2 = 7.68
σ1 = 1 σ2 = 1 π1 = 0.5 π2 = 0.5



iteration 1
For the E-step, we need to find . We have  for clusters and  for datapoints.


To work out , we need to determine the unnormalized likelihoods  for each . We have:


        


            


            


          


          


We can then calculate  for each . For example, with , we have . 

Continuing with this for each datapoint , we arrive at:


                                                                     

γ = [γij] i = 1,2 j = 1,...,5

γij =
πi𝒩(xj |μi, σ2

i )

∑k
g=1 πg𝒩(xj |μg, σ2

g)
γ̃ij = πi𝒩(xj |μi, σ2

i ) i, j

γ̃1,1 = π1𝒩(x1 |μ1, σ2
1) = 0.5𝒩(12.14 |2.57,1) = 2.487e − 21 γ̃2,1 = π2𝒩(x1 |μ2, σ2

2) = 0.5𝒩(12.14 |7.68,1) = 9.31e − 06

γ̃1,2 = π1𝒩(x2 |μ1, σ2
1) = 0.5𝒩(4.55 |2.57,1) = 2.77e − 02 γ̃2,2 = π2𝒩(x2 |μ2, σ2

2) = 0.5𝒩(4.55 |7.68,1) = 1.53e − 03

γ̃1,3 = π1𝒩(x3 |μ1, σ2
1) = 0.5𝒩(2.57 |2.57,1) = 1.99e − 01 γ̃2,3 = π2𝒩(x3 |μ2, σ2

2) = 0.5𝒩(2.57 |7.68,1) = 4.30e − 07

γ̃1,4 = π1𝒩(x4 |μ1, σ2
1) = 0.5𝒩(12.19 |2.57,1) = 1.51e − 21 γ̃2,4 = π2𝒩(x4 |μ2, σ2

2) = 0.5𝒩(12.19 |7.68,1) = 7.37e − 06

γ̃1,5 = π1𝒩(x5 |μ1, σ2
1) = 0.5𝒩(12.78 |2.57,1) = 4.32e − 24 γ̃2,5 = π2𝒩(x4 |μ2, σ2

2) = 0.5𝒩(12.78 |7.68,1) = 4.30e − 07

γij =
γ̃ij

γ̃1j + γ̃2j
i, j j = 2 γ:,2 = [

γ̃1,2

γ̃1,2 + γ̃2,2
,

γ̃2,2

γ̃1,2 + γ̃2,2 ] = [0.95,0.05]

j

γ = [γij] = [[0, 0.95, 1, 0, 0], [1, 0.05, 0, 1, 1]]



iteration 1
For the M-step, we apply the formulas:


                                         


We start with the calculations for : 
      
     


With this, we can find the new weights  (  is also just the number of datapoints): 

     ,     


The new means  are calculated as: 

    ,     


The new variances  are calculated as:


    ,


    


log-likelihood after Iteration 1: 

Ni =
N

∑
j=1

γij π′￼i =
Ni

N
μ′￼i =

∑N
j=1 γijxj

Ni
σ′￼2

i =
∑N

j=1 γij(xj − μ′￼i)2

Ni

N1, N2
N1 = γ1,1 + γ1,2 + γ1,3 + γ1,4 + γ1,5 = 0 + 0.95 + 1 + 0 + 0 = 1.95
N2 = γ2,1 + γ2,2 + γ2,3 + γ2,4 + γ2,5 = 1 + 0.05 + 0 + 1 + 1 = 3.05

π1, π2 N = ∑
j

Nj

π1 = N1/(N1 + N2) = 0.39 π2 = N2/(N1 + N2) = 0.61

μ1, μ2

μ1 =
∑N

j=1 γ1, jxj

N1
=

0.95 ⋅ 4.55 + 1.0 ⋅ 2.57
1.95

= 3.53 μ2 =
∑N

j=1 γ2, jxj

N2
=

1.0 ⋅ 12.14 + 0.05 ⋅ 4.55 + 1.0 ⋅ 12.19 + 1.0 ⋅ 12.78
3.05

= 12.24

σ2
1 , σ2

2

σ2
1 =

∑N
j=1 γ1j(xj − μ′￼1)2

N1
=

0.95 ⋅ (4.55 − 3.53)2 + 1.0 ⋅ (2.57 − 3.53)2

1.95
= 0.987

σ2
2 =

∑N
j=1 γ2, j(xj − μ2)2

N2
=

1.0 ⋅ (12.14 − 12.24)2 + 0.05 ⋅ (4.55 − 12.24)2 + 1.0 ⋅ (12.19 − 12.24)2 + 1.0 ⋅ (12.78 − 12.24)2

3.05
= 1.12

𝚕𝚘𝚐𝚕 = − 9.251



iteration 2
Subsequent iterations are carried out the same way. Here are the results for iteration 2:


E-step


     : [ [7.82374842e-18, 9.22866077e-02, 9.73968107e-02, 4.95946483e-18, 2.34230944e-20]


                                  [2.29617733e-01, 7.42592323e-13, 1.43390620e-19, 2.30381521e-01, 2.01831222e-01] ]


     : [ [3.40729276e-17, 1.00000000e+00, 1.00000000e+00, 2.15271815e-17, 1.16052879e-19]


                                  [1.00000000e+00, 8.04658813e-12, 1.47223116e-18, 1.00000000e+00, 1.00000000e+00] ]


M-step


     : [0.4 0.6]


     : [ 3.56112932 12.37288354]


     : [0.98756428 0.08484898]


log-likelihood: -6.747

γ̃

γ

π

μ

σ2



iteration 3
E-step


     : [ [1.73834797e-017, 1.00000000e+000, 1.00000000e+000, 9.73022463e-018, 1.04859007e-019]


                         [5.99253899e-001, 3.10915235e-157, 7.08580229e-247, 6.79831739e-001, 3.03920512e-001] ]


     : [ [1.73834797e-017, 1.00000000e+000, 1.00000000e+000, 9.73022463e-018, 1.04859007e-019]


                         [1.00000000e+000, 3.19228660e-156, 7.27526641e-246, 1.00000000e+000, 1.00000000e+000] ]


M-step


     : [0.4 0.6]


     : [ 3.56112932 12.37288354]


     : [0.98756428 0.08484898]


log-likelihood: -6.747

γ̃

γ

π

μ

σ2



final result
After three iterations, we have the final model, which has these 
parameters:

















And the model is:





The result is plotted in the graph on the right.

γ ≈ [[0,1,1,0,0], [1,0,0,1,1]]

π ≈ [0.4,0.6]

μ ≈ [3.56,12.37]

σ2 ≈ [0.99,0.08]

𝚕𝚘𝚐𝚕 ≈ − 6.75

pX(x) = 0.4𝒩(x |3.56, 0.99) + 0.6𝒩(x |12.37, 0.08)

𝒩(x |μ1, σ2
1)

𝒩(x |μ2, σ2
2)


