
ECE 20875
Python for Data Science

objects and classes

Chris Brinton, Qiang Qiu, and Mahsa Ghasemi

(Adapted from material developed by Profs. Milind Kulkarni,
Stanley Chan, Chris Brinton, David Inouye, Qiang Qiu)

Python is OOP
• Like C++ and Java, Python is an object-oriented programming

(OOP) language

• An object is Python’s abstraction for data

• A bundle of data and operations  
that execute on this data

• Everything in Python is an object

• All data is represented by objects or relations between objects

• This includes “simple” data like integers and floats

• Even functions are special objects in Python

we’ve been using OOP all along
• Some classes we’ve used so far or will use soon (you can see all of their source code on github):

• sklearn.linear_model.LinearRegression (https://github.com/scikit-learn/scikit-learn/blob/fd237278e/
sklearn/linear_model/_base.py#L389)

• sklearn.svm.SVC (https://github.com/scikit-learn/scikit-learn/blob/fd237278e/sklearn/svm/_classes.py#L428)

• Some instance variables we’ve used so far or will use soon:

• sklearn.linear_model.Ridge.coef_

• sklearn.linear_model.LogisticRegression.intercept_

• Some methods we’ve used so far or will use soon:

• re.sub(...)

• np.sort(...)

• LogisticRegression.fit(...) (https://github.com/scikit-learn/scikit-learn/blob/fd237278e/sklearn/
linear_model/_logistic.py#L1011)

https://github.com/scikit-learn/scikit-learn/blob/fd237278e/sklearn/linear_model/_base.py#L389
https://github.com/scikit-learn/scikit-learn/blob/fd237278e/sklearn/linear_model/_base.py#L389
https://github.com/scikit-learn/scikit-learn/blob/fd237278e/sklearn/svm/_classes.py#L428
https://github.com/scikit-learn/scikit-learn/blob/fd237278e/sklearn/linear_model/_logistic.py#L1011
https://github.com/scikit-learn/scikit-learn/blob/fd237278e/sklearn/linear_model/_logistic.py#L1011

every object in Python has …
1. an identity, accessed through the id() function

• Unique “name” for an object, like its address in memory, which
never changes

2. a type, accessed through the type() function

• This defines the operations that you can perform on an object  
(asking for its length, adding to it, etc.)

• Also defines the possible values this object can take

3. a value, which defines the data associated with the object

• Think the contents of a list, or the value of an integer

• Objects whose values can change (e.g., a dictionary) are
mutable, while objects whose values cannot be changed (e.g.,
a tuple) are immutable

Integers, lists, functions and objects
(and even classes) are objects in Python
my_integer = 5
my_list = [1.0, 2, 3]
def my_function(): return 0
class MyClass: pass
my_object = EmptyClass()

Show id and type of each object
for o in [my_integer, my_list,
 my_function, my_object, MyClass]:
 print(f'id={id(o)}, type={type(o)}’)

Output:
id=4308932128, type=<class 'int'>
id=4364494984, type=<class 'list'>
id=4363413160, type=<class 'function'>
id=4368615744, type=<class '__main__.EmptyClass'>
id=140649053790680, type=<class 'type'>

defining an object
• Intuition: an object is defined by

1. Where it is (what box of memory contains its
information)

2. What it can do (what operations you can perform
on it)

3. What it has (what data those operations will
operate on)

• Formally, an object is defined as an instance of a class

• A class is like a fill-in-the-blank sheet, template, or
blueprint

• An instance is like a template that has been filled in
with particular values or an actual building/object

class
fieldA

fieldB

…

method1

method2

…

object 1

fieldA = 10

fieldB = ‘cod’

…

method1

method2

…

object 2

fieldA = ‘py’

fieldB = 43

…

method1

method2

…

• Any data scientist can write their own ML
class and submit it to scikit-learn

• Must follow the common basic API
(https://scikit-learn.org/stable/
developers/develop.html): estimator,
predictor, transformer, model

https://scikit-learn.org/stable/developers/develop.html
https://scikit-learn.org/stable/developers/develop.html

instantiating objects from classes
• We define what an object has (variables) and what it

can do (methods) by creating a class for that object

• Think of this as a template for an object that
specifies what information and actions this object
has

• There are two types of class attributes:

1. variables (either class variables or instance
variables), which hold the data we want in an
object

2. methods, which are the functions we want to be
able to invoke on an object

• __init__(): Special constructor method
automatically invoked for each new class instance

class Foo :

 x = 7 #this will be accessible to all Foos

#it is a class variable

 #this is called when a new Foo is created

 def __init__(self, i) :

 self.y = i #this is specific to each Foo

 #it is an instance variable

#this will be available to all Foos

#it is a class method

 def bar(self) :

 return self.x + self.y

#defining objects as instances of class Foo

a = Foo(1) #a.x = 7, a.y = 1

b = Foo(2) #b.x = 7, b.y = 2

#invoking the bar method on the objects

print(a.bar()) #prints 8

print(b.bar()) #prints 9

manipulating objects
• Manipulating an object involves invoking operations

on the object

• Intuition: Think of this as “sending a message” to
an object, i.e., asking an object to handle an action

• Including things you might not think of!

• x	=	a	+	b is invoking the __add__() method
on object a

• len(s) is invoking the __len__() method on
object s

• We can also overwrite these default methods if
we want different functionality! (see example on
the right)

class MultipleLists():
 def __init__(self):
 self.lists = []
 def __add__(self, a):
 newlists = MultipleLists()
 newlists.lists = self.lists.copy()
 newlists.lists.append(a)
 return newlists
 def __len__(self):
 return sum([len(a) for a in self.lists])
 def __str__(self):
 return ', '.join([
 f'L{i+1}={a}'
 for i, a in enumerate(self.lists)
])

many_lists = MultipleLists()
print(many_lists) # ''
print(len(many_lists)) # 0

many_lists = many_lists + [3,5,1]
print(many_lists) # L1=[3, 5, 1]
print(len(many_lists)) # 3

many_lists += [8, 4]
print(many_lists) # L1=[3, 5, 1], L2=[8, 4]
print(len(many_lists)) # 5

redefining default
methods

creating, updating and accessing

variables in objects

• Accessing variables in objects uses the “.” notation:
my_object.x (MyClass.x for class variables)

• Under the hood, this is also invoking methods!

• Object variables can generally be:

• created/deleted (if mutable object and user-created)

• updated (if mutable object)

• accessed

• Variable updates can be done either internally (via
object methods, preferred) or externally (via “hard
coding”, need to be careful when doing this)

class SimpleClass():
 def __init__(self, x):
 # internal created
 self.myx = x
 def add(self, y):
 # internal access and update
 self.myx = self.myx + y
my_object = SimpleClass(10)

external access
print(my_object.myx) # 10

internal update
my_object.add(15)
print(my_object.myx) # 25

external update
my_object.myx = 200
print(my_object.myx) # 200

external variable creation
my_object.myz = 18
print(my_object.myz) # 18

external variable deletion
del my_object.myz
print(my_object.myz) # Error

the special role of self in

defining or calling methods on objects

• When you call a method on an object,
the object itself is always passed as
the first argument of the method

• The object is called self

• Think of this like the this
parameter in Java or C++ (except
that it shows up explicitly in the
argument list)

• By accessing self.x, we can create
or access variables that are specific
to this object

 class Employee :

 empCount = 0

 def __init__(self, name, salary) :

 self.name = name

 self.salary = salary

Employee.empCount += 1

def displayCount(self):

print(“Total employees: %d” %
Employee.empCount)

def displayEmployee(self):

print(“Name: ”, self.name, ”, Salary: ”,
self.salary)

emp1 = Employee(“Alice”, 100000)

emp2 = Employee(“Bob”, 50000)

emp1.displayEmployee()

emp1.displayCount() #Total Employees: 2

emp2.displayCount() #Total Employees: 2

within the class, we

have to use self as

the first argument

outside of the class,

self is implicitly

the first argument

