ECE 20875
Python for Data Science

Chris Brinton, Qiang Qiu, and Mahsa Ghasemi

(Adapted from material developed by Profs. Milind Kulkarni,
Stanley Chan, Chris Brinton, David Inouye, Qiang Qiu)

objects and classes



Python is OOP

* Like C++ and Java, Python is an object-oriented programming
(OOP) language

* An object is Python’s abstraction for data A R R SULATION

* A bundle of data and operations
that execute on this data

POLYMORPHISM INHERITANCE

* Everything in Python is an object
* All data is represented by objects or relations between objects
* This includes “simple” data like integers and floats

* Even functions are special objects in Python



we’ve been using OOP all along

» Some classes we’ve used so far or will use soon (you can see all of their source code on github):

 sklearn.linear_model.LinearRegression (https://qgithub.com/scikit-learn/scikit-learn/blob/fd237278e/
sklearn/linear model/ base.py#L 389)

 sklearn.svm.SVC (https://github.com/scikit-learn/scikit-learn/blob/fd237278e/sklearn/svm/ classes.py#L 428)

* Some instance variables we’ve used so far or will use soon: class LogisticRegression(saseEstinator, Linearclassitienuixin,

® Sklea NN. linea r‘_mOde:I_ . Ridge . Coe'F_ Logistic Regression (aka logit, MaxEnt) classifier.

In the multiclass case, the training algorithm uses the one-vs-rest (OvR)

scheme if the 'multi class' option is set to 'ovr', and uses the

® Sklea Pn ° linea r‘_mOdel ° Logi StiCRegr‘eSSion ° inter‘cept_ cross-entropy loss if the 'multi_class' option is set to 'multinomial’.

(Currently the 'multinomial’ option 1is supported only by the "lbfgs’,

‘sag’', 'saga' and 'newton-cg' solvers.)

¢ Some methOdS We,ve used SO far Or Wi” use Soon: This class implements regularized logistic regression using the

"liblinear' library, 'newton-cg', 'sag', 'saga' and 'lbfgs' solvers. **Note
that regularization is applied by default**. It can handle both dense

o r‘e ° SUb( o o o ) and sparse input. Use C-ordered arrays or CSR matrices containing 64-bit
flecats for optimal performance; any other input format will be converted

(and copied).

e Nnp.sort(...)

e LogisticRegression.fit(...) (https://github.com/scikit-learn/scikit-learn/blob/f{d237278e/sklearn/
linear model/ logistic.py#L1011)



https://github.com/scikit-learn/scikit-learn/blob/fd237278e/sklearn/linear_model/_base.py#L389
https://github.com/scikit-learn/scikit-learn/blob/fd237278e/sklearn/linear_model/_base.py#L389
https://github.com/scikit-learn/scikit-learn/blob/fd237278e/sklearn/svm/_classes.py#L428
https://github.com/scikit-learn/scikit-learn/blob/fd237278e/sklearn/linear_model/_logistic.py#L1011
https://github.com/scikit-learn/scikit-learn/blob/fd237278e/sklearn/linear_model/_logistic.py#L1011

an identity, accessed through the 1d () function

 Unique “name” for an object, like its address in memory, which
never changes

a type, accessed through the type () function

* This defines the operations that you can perform on an object
(asking for its length, adding to it, etc.)

* Also defines the possible values this object can take
a value, which defines the data associated with the object
* Think the contents of a list, or the value of an integer
 Objects whose values can change (e.g., a dictionary) are

mutable, while objects whose values cannot be changed (e.g.,
a tuple) are immutable

every object in Python has ...

# Integers, lists, functions and objects
# (and even classes) are objects in Python
my integer = 5

my list = [1.0, 2, 3]

def my function(): return 0

class MyClass: pass

my object = EmptyClass()

# Show id and type of each object
for o in [my integer, my list,
my function, my object, MyClass]:
print(f'id={id(o)}, type={type(o)}’)

Output:

1d=4308932128, type=<class 'int'>

1d=4364494984, type=<class 'list'>

1d=4363413160, type=<class 'function'>
1d=4368615744, type=<class ' main .EmptyClass'>
1d=140649053790680, type=<class 'type'>




defining an object

class

 |ntuition: an object is defined by fieldA method

fieldB method?2

1. Where it is (what box of memory contains its

information) / \
X
2

. What it can do (what operations you can perform

on it) object 1 object 2
fieldA=10 method1 fieldA = ‘py’ method1

3. What it has (what data those operations will fieldB = ‘cod’” method2 fieldB =43 method2
operate on) :

 Formally, an object is defined as an instance of a class

* Any data scientist can write their own ML
class and submit it to scikit-1learn

 Aclass is like a fill-in-the-blank sheet, template, or

blueprint |
e Must follow the common basic API

(https://scikit-learn.org/stable/
developers/develop.html): estimator,
predictor, transformer, model

* An instance is like a template that has been filled In
with particular values or an actual building/object



https://scikit-learn.org/stable/developers/develop.html
https://scikit-learn.org/stable/developers/develop.html

Instantiating objects from classes

* \We define what an object has (variables) and what it
can do (methods) by creating a class for that object

* Think of this as a template for an object that

specifies what information and actions this object
has

* There are two types of class attributes:

1.

variables (either class variables or instance

variables), which hold the data we want in an
object

. methods, which are the functions we want to be

able to invoke on an object

® init_(): Special constructor method
automatically invoked for each new class instance

class Foo :

#deflnlng objects

a
b

#invoking the bar method

= 7 #this will be accessible to all Foos
#1t 1s a class variable

#this 1s called when a new Foo 1s created
def __init_ (self, i)
self.y = 1 #this 1s specific to each Foo
#1t 1s an 1nstance varilable

#this will be available to all Foos
#it 1s a class method
def bar(self)

return self.x + self.y

as 1instances of class Foo
/, a.y 1
7, b.y = 2

Foo(1l) #a.x
= Foo(2) #b.x

on the objects

print(a.bar()) #prints 8

print(b.bar()) #prints 9




manipulating objects

 Manipulating an object involves invoking operations
on the object

* |ntuition: Think of this as “sending a message” to
an object, I.e., asking an object to handle an action

* |ncluding things you might not think of!

e X = a + bisinvokingthe add () method
on object a

e len(s) isinvokingthe 1len () method on
object s

* \We can also overwrite these default methods if
we want different functionality! (see example on
the right)

class MultipleLists(): .
def init (self): repleflnlng default

self.lists = [] methods
def add (self, a):~" x:/
newlists = MultipleL;été()
newlists.lists = sglﬁflists.copy()
newlists.lists.append(a)
return newlists,” ./
def len (self):” 7

return sum([len{é) for a in self.lists])
def str (self):’

return ', '.join(]
f'L{i+1}={a}’
for 1, a in enumerate(self.lists)

1)

many lists = MultipleLists()
print (many lists) 7
print(len(many lists)) # 0

many lists = many lists + [3,5,1]
print(many lists) # L1=[3, 5, 1]
print(len(many lists)) # 3

many lists += [8, 4]
print(many lists) # L1=[3, 5, 1], L2=[8, 4]
print(len(many lists)) # 5




creating, updating and accessing
variables in objects

* Accessing variables in objects uses the “.” notation:
my object.x (MyClass.x for class variables)

 Under the hood, this is also invoking methods!
* QObject variables can generally be:
» created/deleted (if mutable object and user-created)
e updated (if mutable object)
* accessed
* Variable updates can be done either internally (via

object methods, preferred) or externally (via “hard
coding”, need to be careful when doing this)

class SimpleClass():
def 1i1nit (self, x):
# internal created
self.myx = X
def add(self, vy):
# lnternal access and update
self.myx = self.myx + vy
my object = SimpleClass(10)

# external access
print(my object.myx) # 10

# internal update
my object.add(1l5)
print(my object.myx) # 25

# external update
my object.myx = 200
print(my object.myx) # 200

# external variable creation
my object.myz = 18
print(my object.myz) # 18

# external variable deletion
del my object.myz
print(my object.myz) # Error




the special role of self In
defining or calling methods on objects

 When you call a method on an object,
the object itself is always passed as
the first argument of the method

 The object is called se Lf

e Think of this like the this
parameter in Java or C++ (except
that it shows up explicitly in the
argument list)

By accessing se L. X, we can create
or access variables that are specific
to this object

outside of the class, ™——_
self is implicitly
the first argument

within the class, we

class Employee : have to use self as

empCount = 0 / the first argument

def __init__ (self, name, salary)
self.name = name
self.salary = salary
Emp loyee.empCount += 1

def displayCount(self):
print(“Total employees: %d”
Employee.empCount)

o®

def displayEmployee(self):
print(“Name: ", self.name,
self.salary)

144

, Salary:

Employee(“Alice”, 100000)
Employee(“Bob”, 50000)

empl
emp2

empl.displayEmployee()
»empl.displayCount() #Total Employees: 2

emp2.displayCount() #Total Employees: 2

144

4




