
ECE 20875
Python for Data Science

classification: naive bayes

Chris Brinton, Qiang Qiu, and Mahsa Ghasemi

(Adapted from material developed by Profs. Milind Kulkarni,
Stanley Chan, Chris Brinton, David Inouye, Qiang Qiu)

what is classification?
• Given a data point, tell me what class it falls into

• Is this animal a mammal, a bird, a fish, …

• Is this picture a cat, a horse, a car, …

• Generally, we want to learn a classifier

• We are given a bunch of data points: , etc.
where each data point is labeled with its class

• Classifier should be able to tell which class a new
datapoint belongs to

• Because we start with labeled data, this is another
example of supervised learning

x1, x2, x3

defining a classifier formally
• Consider datapoints in a -dimensional space, i.e., where

each datapoint is defined by features, written as
.

• Each datapoint is from one of possible classes
. We denote ’s class as

.

• A classifier is a function that predicts a datapoint’s class.
Formally, , where is the
prediction of the actual class .

• We will focus on learning classifiers for two classes, i.e.,

d
i d

xi = (xi1, xi2, . . . , xid)

i K
C0, C1, . . . , CK−1 i
yi ∈ {C0, . . . , CK−1}

̂yi = f(xi) ̂yi ∈ {C0, . . . , CK−1}
yi

K = 2

four different methodologies
• Like regression, there are many different flavors of classification algorithms

• We will talk about four different, yet common and representative methodologies:

1. Naïve Bayes: Simple model to use. But it’s parametric — requires
distributional assumptions about the data.

2. k-nearest neighbor (kNN): Very easy model to understand. Expensive model
to evaluate. But it’s non-parametric — requires few assumptions about data.

3. Logistic regression: Another parametric model (derived from linear
regression) whose decision boundary is linear.

4. Neural networks: Trendy approach! Essentially cascading nonlinear
functions together to maximize potential predictive power.

naïve bayes model
• Basic idea: Each class of data can be described by a

probability distribution showing how likely different data points
are

• If I have a new data point , which distribution is it more
likely to come from?

• Example: Two classes of cars — sports cars and
minivans

• Each car can be described by its average speed , and the
two classes have different distributions of speeds
(i.e., sports cars have a higher average speed than
minivans)

• I see a new speed reading . Is car a sports car (i.e.,
) or a minivan (i.e.,)?

xi

C1
C0

x
C0, C1

xi i
yi = C1 yi = C0

naïve bayes model
• Similar to Gaussian mixture models, we can

define our naïve bayes model according to the
following probabilities/distributions:

• - Prior probabilities of
classes 0 and 1 (in our example, probability
of sports car and minivan)

• - Distribution for class 0 (e.g.,
distribution of minivan)

• - Distribution for class 1 (e.g.,
distribution of sports car)

P(C0), P(C1)

P(x |C0)

P(x |C1)

predicting with naïve bayes
• Basic idea: Each class of data can be described by a probability distribution showing how

likely different data points are

• If I have a new data point , which distribution is it more likely to have been drawn
from?

• Formally, this is quantified in terms of the posterior distributions (conditional
probabilities):

• Problem: How do we actually infer (or compute) these probabilities given our model?

x

P(C0 |x) vs P(C1 |x)

Probability of minivan given
average speed x

Probability of sports car given
average speed x

bayes’ theorem to the rescue
• Bayes’ theorem allows us to compute the posterior probability (which we

do not know) using quantities from the naïve bayes model (which we can
estimate)

• We have seen this “trick” before, most recently with Gaussian mixture
models. For the case of comparing

we can write

P(C0 |x) =
P(x |C0)P(C0)

P(x)
P(C1 |x) =

P(x |C1)P(C1)
P(x)

P(C0 |x) vs P(C1 |x)

bayes’ theorem to the rescue

P(x |C0)P(C0)
P(x)

?
>

P(x |C1)P(C1)
P(x)

P(x |C0)P(C0)
?
> P(x |C1)P(C1)

P(C0 |x)
?
> P(C1 |x)

P(x |C0)
P(C0)
P(C1)

?
> P(x |C1)

• With some simple algebra, we can
write the following:

P(x |C0)
P(C0)
P(C1)

?
> P(x |C1)

• So our comparison boils down
three quantities:

Likelihood of x
in Class 0

Likelihood of x
in Class 1

How much more
common Class 0
Is than Class 1

• Once we’ve applied Bayes’ theorem, we can estimate the
necessary probabilities

• : Comes from either prior knowledge or can
be estimated based on the frequency of each label in data

• Given all cars, how much more common are minivans
than sports cars?

• If we have no prior knowledge, we may assume that both
classes are equally likely, i.e.,

• : Comes from estimates of
distributions

• Estimate the distributions of the two classes given the
labeled data!

P(C0)/P(C1)

P(C0)/P(C1) = 1

P(x |C0) & P(x |C1)

estimating the naïve bayes model

P(x |C0)
P(C0)
P(C1)

?
> P(x |C1)

estimating distributions
• Can always fall back on empirical distributions

• Use datasets to build histograms, use histograms as
estimators (recall the histogram module)

• But the parametric approach is more common with Naïve
Bayes

• Use some prior knowledge to choose a model for your
data, estimate the parameters of that model

• Common choice: Gaussian Naïve Bayes

• Estimate mean and variance from data sets

• Given a learned Gaussian, can directly “read off” the
likelihood of , i.e., x 𝒩(x |μ, σ2)

back to our example: naïve bayes with gaussian

• Estimate parameters of sports cars and
minivans by using mean and variance of
training data

• For all sports cars () in the training data,
find the sample mean () and sample
variance (), and use these to approximate

 and

• Likewise for all minivans (and)

• Use resulting normal distributions to compute
posterior probabilities of new data point being
in one class or the other based on observed
speed

C1
x̄1

s2
x1

μ1 σ2
1

μ0 σ2
0

𝒩(x | x̄0, s2
x0

)

𝒩(x | x̄1, s2
x1

)

naïve bayes with gaussian
• Estimate parameters of sports cars

and minivans by using mean and
variance of training data

• Use resulting normal distributions to
compute likelihoods of new data
point being in one class or the other
based on observed speed

• If speed is high, more likely to be
sports car

Note: here we are assuming that P(minivan) = P(sports car)

𝒩(x | x̄0, s2
x0

)

𝒩(x | x̄1, s2
x1

)

naïve bayes with gaussian
• Estimate parameters of sports cars

and minivans by using mean and
variance of training data

• Use resulting normal distributions to
compute likelihoods of new data
point being in one class or the other
based on observed speed

• If speed is low, more likely to be
minivan

Note: here we are assuming that P(minivan) = P(sports car)

𝒩(x | x̄0, s2
x0

)

𝒩(x | x̄1, s2
x1

)

naïve bayes with gaussian
• Estimate parameters of sports cars

and minivans by using mean and
variance of training data

• Use resulting normal distributions to
compute likelihoods of new data
point being in one class or the other
based on observed speed

• Note that it is possible to
misclassify!

Note: here we are assuming that P(minivan) = P(sports car)

𝒩(x | x̄0, s2
x0

)

𝒩(x | x̄1, s2
x1

)

what about higher dimensions?
• Suppose we have features for each datapoint instead of just one

• For count features such as n-gram counts, could use multinomial naïve Bayes

• For continuous features, could use a multivariate Gaussian:

• Naïve assumption: Assume features independent and fit class mean and
variance for each feature independently

• More general: Fit class in terms of mean (of each dimension) and
covariance matrix (cov command in numpy computes covariance)

• Mean is d x 1 vector , covariance is d x d matrix with determinant .
The probability density function for a is:

d

μ Σ |Σ |

Multinomial Distribution
(2 count features)

𝒩(x |μ, Σ) =
1

(2π)d |Σ |
e− 1

2 (x−μ)TΣ−1(x−μ)

See: scipy.stats.multivariate_normal

Gaussian Naive Bayes

what about multiple classes?
• We just infer and compare more cases

• For classes, the predicted class for
datapoint is

• Issue with more classes is we have
less data with which to infer each
class’

• The data is being “divided” further

K
x

arg max
k=0,...,K−1

P(x |Ck)P(Ck)

P(x |Ck)

naïve bayes in Python
• The sklearn.naive_bayes library	(https://scikit-

learn.org/stable/modules/classes.html#module-
sklearn.naive_bayes)

• Three main types of interest

• Gaussian (continuous data): 
from	sklearn.naive_bayes	import	GaussianNB	

• Bernoulli (binary data): 
from	sklearn.naive_bayes	import	
BernoulliNB	

• Multinomial (count data): 
from	sklearn.naive_bayes	import	
MultinomialNB

from	sklearn.datasets	import	load_iris		
iris	=	load_iris()		

X	=	iris.data		
y	=	iris.target		

from	sklearn.model_selection	import	
train_test_split		
X_train,	X_test,	y_train,	y_test	=	
train_test_split(X,	y,	test_size=0.4,	
random_state=1)		

from	sklearn.naive_bayes	import	
GaussianNB		
gnb	=	GaussianNB()		
gnb.fit(X_train,	y_train)		

y_pred	=	gnb.predict(X_test)		

from	sklearn	import	metrics		
print("Gaussian	Naive	Bayes	model	
accuracy(in	%):",	
metrics.accuracy_score(y_test,	
y_pred)*100)

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes

example of multinomial naïve bayes
We want to build a classifier to infer whether a new Tweet is about sports or
not. Our training data has five tweets:

Text Label

“A great game” Sports

“The election was over” Not Sports

“Very clean match” Sports

“A clean but forgettable game” Sports

“It was a close election” Not Sports

Will the Tweet “A	very	close	game” be
assigned to Sports or Not	Sports by a
naïve bayes classifier?

To do this, assume a multinomial model
where features are word frequencies (in a
bag of words model). Do not filter out any
stopwords.

solution
We have two classes, Sports and Not	Sports, which we will call S and N. We need to
compare the probabilities and .

By the mechanics of naïve Bayes, we can reverse the conditional probabilities, so we
need to compare 
 

 with

To compute , we are going to assume that every word in the sentence is
independent of the others (similar to the bag of words principle). So, 
 

 
 

P(S |Tweet) P(N |Tweet)

P(Tweet |S) ⋅ P(S) P(Tweet |N) ⋅ P(N)

P(Tweet | ⋅)

P(Tweet |S) = P(a |S) ⋅ P(very |S) ⋅ P(close |S) ⋅ P(game |S)

P(Tweet |N) = P(a |N) ⋅ P(very |N) ⋅ P(close |N) ⋅ P(game |N)

Multinomial
distribution

with N=4 words

solution: probabilities and
Laplace smoothing

Now, we infer and for each word by calculating the
fraction of the class that corresponds to this particular word. For example,

, since out of the sports documents, game appears twice,
and there are 11 words total.

Notice, however, that some of these probabilities would be 0, since not every
word in the Tweet appears in both classes. For example, . This
would make and , which is not particularly
useful.

As a result, in solving these types of problems, we typically add something called
Laplace smoothing to the probability calculations: we add 1 to each count in the
numerator, and add the total number of words to the denominator to normalize.

P(word |S) P(word |N)

P(game |S) = 2/11

P(close |S) = 0
P(Tweet |S) = 0 P(Tweet |N) = 0

Text Label
“A great game” Sports

“The election was over” Not Sports
“Very clean match” Sports

“A clean but forgettable game” Sports
“It was a close election” Not Sports

Formally, the Laplace smoothing equations are:

 and

where e.g., is the number of words in the sports
class and is the total number of (unique) words.

In our case, . So, for example,
.

The partial set of probabilities are given in the table on
the right.

P(word |S) =
nw,S + 1
nS + W

P(word |N) =
nw,N + 1
nN + W

nS
W

W = 14
P(game |S) = (2 + 1)/(11 + 14) = 3/25

word P(word | S) P(word | N)

a 3/25 2/23

very 2/25 1/23

close 1/25 2/23

game 3/25 1/23

… … …

solution
Text Label

“A great game” Sports
“The election was over” Not Sports

“Very clean match” Sports
“A clean but forgettable game” Sports

“It was a close election” Not Sports

Now, we multiply the probabilities:

Finally, we need and . If the training dataset is large enough and chosen randomly, one
possibility is to let these be the proportion of documents in each category. But with the absence of
such information, it is safest to assume . Therefore,

Our classifier would predict Sports, as we would desire in this case!

P(Tweet |S) =
3

25
⋅

2
25

⋅
1
25

⋅
3
25

= 2.76 × 10−5

P(Tweet |N) =
2
23

⋅
1
23

⋅
2

23
⋅

1
23

≈ 0.572 × 10−5

P(S) P(N)

P(S) = P(N) = 0.5

P(S |Tweet) ∝ P(Tweet |S)P(S) = 1.38 × 10−5

P(N |Tweet) ∝ P(Tweet |N)P(N) = 0.286 × 10−5

word P(word | S) P(word | N)
a 3/25 2/23

very 2/25 1/23
close 1/25 2/23
game 3/25 1/23

solution
Text Label

“A great game” Sports
“The election was over” Not Sports

“Very clean match” Sports
“A clean but forgettable game” Sports

“It was a close election” Not Sports

pros vs cons of naïve bayes
+ Easy to build classifier (once you estimate the model)

+ Easy to compute likelihood

+ Good for missing data (distribution lets you estimate behaviors of data
points you don’t have)

- Need to choose a model for the data (get it wrong, classifier will not be
reliable)

- Need prior knowledge to build classifier (relative likelihood of classes)

