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regression with two classes
• With linear regression, we model the relationship 

between features and target with a linear equation: 
 
    


• Now, suppose we have two classes, i.e., . 
We could use linear regression, but …


• it will treat the classes as numbers, interpolating 
between the points


• it cannot be interpreted as a probability


• how would we generalize to multiple classes?

̂yi = β0 + β1x1 + β2x2 + ⋯ + βmxm
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• Need a decision threshold, i.e., 



• In this case, we would never 
predict the class , 
regardless of what  is!
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logistic regression model
• Instead of fitting a hyperplane (a line generalized to more than one 

dimension), use the logistic function 




to translate the output of linear regression to between 
 (as ) and  (as )


• Note that  (useful for derivations)  


• This converts the outputs to probabilities:


 

g(v) =
1

1 + e−v

0 v → − ∞ 1 v → ∞

1 − g(v) =
e−v

1 + e−v

fβ(x) = g(β0 + βTx) = P(y = 1 |x)

=
1

1 + exp( − (β0 + β1x1 + β2x2 + ⋯ + βmxm))
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• Now the decision rule 
• 

• 


has a probabilistic interpretation

̂y(x) ≥ 0.5 → ̂y = 1
̂y(x) < 0.5 → ̂y = 0



interpreting coefficients
• In linear regression, the effect of a coefficient is clear:  means for every unit change 

in , the model changes by 


• For logistic regression, we need to find a different interpretation, since the weights no 
longer have a linear effect


• Consider the odds, i.e., the ratio :


• 


   

βjxj
xj βj

P(y = 1 |x)/P(y = 0 |x)

P(y = 1 |x)
P(y = 0 |x)

=
1

1 + exp( − (β0 + β1x1 + ⋯ + βmxm))
⋅

1 + exp( − (β0 + β1x1 + ⋯ + βmxm))
exp( − (β0 + β1x1 + ⋯ + βmxm))

=
1

exp( − (β0 + β1x1 + ⋯ + βmxm))
= exp(β0 + β1x1 + ⋯ + βmxm)



interpreting coefficients
• Then we consider the ratio of the odds 

when  is increased by :





• Thus, a unit change in  corresponds 
to a factor  change in the odds


• :  increases the odds


• :  decreases the odds

xj 1

oddsxj+1

oddsxj

=
exp(⋯ + βj(xj + 1) + ⋯)

exp(⋯ + βjxj + ⋯)
= eβj

xij
eβj

eβj > 1 xj

eβj < 1 xj

̂y =
1

1 + exp( − (3 + 2x1 + 0.5x2 − 3x3))

• For this model …


•  and  increase the odds


•  decreases the odds


•  has the largest factor impact 
on the odds (assuming the 
features are normalized!)
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• Consider



training logistic regression
• With linear regression, we can derive a closed-form solution for the parameters in terms of the 

least-squares equations


• For logistic regression, let’s consider the likelihood of the model over data samples :





• And then the log likelihood, which is easier to optimize (like we did with GMMs):





• There is no (known) closed form solution to maximize , given the  terms

i = 1,...,n

L(β) =
n

∏
i=1

p(yi |xi, β) =
n

∏
i=1

( fβ(xi))yi ⋅ (1 − fβ(xi))1−yi

l(β) =
n

∑
i=1

log [( fβ(xi))yi ⋅ (1 − fβ(xi))1−yi] =
n

∑
i=1

[yi log fβ(xi) + (1 − yi)log(1 − fβ(xi))]
l(β) log fβ(xi)

when , we want to maximize  , and 
when , we want to maximize 

yi = 1 fβ(xi)
yi = 0 1 − fβ(xi)



gradient descent (ascent)
• We want to find  to maximize  but no closed-form exists.


• Consider the gradient descent (ascent) algorithm, an 
iterative procedure for finding a local minimum (maximum) 
of a function by moving away from (towards) the gradient:





• Here,  is the step size of the algorithm at time 


• Since  is a concave function, we can guarantee that 
gradient ascent will eventually converge to the global 
maximum, so long as certain conditions on  are met

β l(β)

βt+1
j = βt

j − αt ∂
∂βj

l(βt), βt+1
j = βt

j + αt ∂
∂βj

l(βt)

αt t

l(β)

αt

for non-convex functions, 
no guarantee of 

convergence to optimum

in general, the step size 
must be tuned correctly

Gradient AscentGradient Descent



gradient ascent t example
Suppose we have a single parameter  for some model we are trying to 
train. For this model, we find a log-likelihood function of





where  and  are constants. Derive the iterative procedure for determining 
the model parameters as a function of the step size . Run the procedure 
for different values of  until  and compare the results.

b

l(b) = − ( b − m
s )

2

m s
αt

αt t = 10



solution
We always want to maximize the log-
likelihood, so we use gradient ascent. 
Letting  be the value of  at iteration 
, our update procedure will be:





Evaluating the derivative, this becomes:


bt b
t

bt+1 = bt + αt d
db

l(bt)

bt+1 = bt − 2αt ( bt − m
s2 )

Suppose . If 
we start at  (arbitrary), we get








…


α = 0.1, m = 5, s = 0.7
b0 = 1.1

b1 = 1.1 − 2 ⋅ 0.1 ⋅ ( 1.1 − 5
0.72 ) = 2.692

b2 = 2.692 − 2 ⋅ 0.1 ⋅ ( 2.692 − 5
0.72 ) = 3.634

b10 = 4.965 − 2 ⋅ 0.1 ⋅ ( 4.965 − 5
0.72 ) = 4.979

l(b) = − ( b − m
s )

2



solution
Below, we plot the evolution of  over  (see the Jupyter notebook), starting with 

 for . Again, we set  and .
bt t

b0 = 1.1 αt = 0.01, 0.05, 0.1, 0.2, 0.4, 0.5 m = 5 s = 0.7

Here, the -axis is actually 
, to make the values 

positive. Maximizing the log-
likelihood is equivalent to 
minimizing the negative log-
likelihood.


Tuning  is a very important 
question!

y
−l(b)

αt



gradient ascent for logistic regression
• Back to logistic regression. Evaluating the partial derivative,














• Thus, we get the following gradient ascent rule for logistic regression:


∂
∂βj

l(β) =
∂

∂βj

n

∑
i=1

[yi log fβ(xi) + (1 − yi)log(1 − fβ(xi))]

=
n

∑
i=1 ( yi

fβ(xi)
−

1 − yi

1 − fβ(xi) ) ∂
∂βj

fβ(xi)

=
n

∑
i=1 ( yi

fβ(xi)
−

1 − yi

1 − fβ(xi) ) fβ(xi)(1 − fβ(xi))
∂

∂βj
(⋯ + βjxij + ⋯)

=
n

∑
i=1

(yi(1 − fβ(xi)) − (1 − yi)fβ(xi)) xij =
m

∑
i=1

(yi − fβ(xi))xij

βt+1
j = βt

j + αt [
n

∑
i=1

(yi − fβ(xi))xij]

Partial derivative of loss with respect to fβ(xi)

Partial derivative of logistic function  
with respect to 

g(v)
vi ≡ β1xi1 + β2xi2 + …

Partial derivative of  
with respect to 

vi
βj

∂
∂v

g(v) =
∂
∂v

(1 + e−v)−1 = − (1 + e−v)−2e−v(−1) = g(v)(1 − g(v))



in python
• from	sklearn.linear_model	import	
LogisticRegression


• https://scikit-learn.org/stable/
modules/generated/
sklearn.linear_model.LogisticRegres
sion.html


• Most methods (fit, predict, …) are the 
same as linear regression


• One difference: Regularization parameter 


• Higher : Less regularization


• Lower : More regularization

C

C

C

from	sklearn.linear_model	
import	LogisticRegression


from	sklearn	import	metrics


logreg	=	LogisticRegression()


logreg.fit(X_train,y_train)


y_pred	=	logreg.predict(X_test)


metrics.accuracy_score(y_test,y
_pred)

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
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