ECE 20875 Python for Data Science

Chris Brinton, Qiang Qiu, and Mahsa Ghasemi

(Adapted from material developed by Profs. Milind Kulkarni, Stanley Chan, Chris Brinton, David Inouye, Qiang Qiu)

classification: logistic regression

regression with two classes

• With linear regression, we model the relationship between features and target with a linear equation:

$$\hat{y}_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_m x_n$$

- Now, suppose we have two classes, i.e., y ∈ {0, 1}.
 We could use linear regression, but ...
 - it will treat the classes as numbers, interpolating between the points
 - it cannot be interpreted as a probability
 - how would we generalize to multiple classes?

m

- Need a decision threshold, i.e., y = 0.5
- In this case, we would never predict the class y = 0, regardless of what x is!

logistic regression model

• Instead of fitting a hyperplane (a line generalized to more than one dimension), use the **logistic function**

$$g(v) = \frac{1}{1 + e^{-v}}$$

to translate the output of linear regression to between 0 (as $v \rightarrow -\infty$) and 1 (as $v \rightarrow \infty$)

• Note that
$$1 - g(v) = \frac{e^{-v}}{1 + e^{-v}}$$
 (useful for deri

• This converts the outputs to probabilities:

$$f_{\beta}(x) = g(\beta_0 + \beta^T x) = P(y = 1 | x)$$

=
$$\frac{1}{1 + \exp(-(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots - \beta_1 x_1 + \beta_1 x_1 + \beta_1 x_2 + \dots - \beta_1 x_1 + \beta_1 x_1 + \beta_1 x_2 + \dots - \beta_1 x_1 + \beta_1 x_1 + \beta_2 x_2 + \dots - \beta_1 x_1 + \beta_1 x_2 + \dots - \beta_1 x_1 + \beta_1 x_1 + \beta_1 x_2 + \dots - \beta_1 x_2 + \dots$$

ivations)

- Now the **decision rule**
 - $\hat{y}(x) \ge 0.5 \to \hat{y} = 1$
 - $\hat{y}(x) < 0.5 \rightarrow \hat{y} = 0$

has a probabilistic interpretation

 $+\beta_m x_m))$

interpreting coefficients

- In linear regression, the effect of a coef in x_j , the model changes by β_j
- For logistic regression, we need to find longer have a linear effect
- Consider the odds, i.e., the ratio P(y =

• $\frac{P(y=1 \mid x)}{P(y=0 \mid x)} = \frac{1}{1 + \exp(-(\beta_0 + \beta_1 x_1 + \cdots + \beta_1 x_1))}$ $= \frac{1}{\exp(-(\beta_0 + \beta_1 x_1 + \cdots + \beta_1 x_$

• In linear regression, the effect of a coefficient is clear: $\beta_j x_j$ means for every unit change

• For logistic regression, we need to find a different interpretation, since the weights no

$$\frac{1|x}{P(y = 0|x)} \cdot \frac{1 + \exp(-(\beta_0 + \beta_1 x_1 + \dots + \beta_m x_m))}{\exp(-(\beta_0 + \beta_1 x_1 + \dots + \beta_m x_m))}$$
$$\frac{1}{P(x_m)} = \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_m x_m)$$

interpreting coefficients

 Then we consider the ratio of the odds when x_i is increased by 1:

$$\frac{\text{odds}_{x_j+1}}{\text{odds}_{x_j}} = \frac{\exp(\dots + \beta_j(x_j+1) + \dots)}{\exp(\dots + \beta_j x_j + \dots)} = e^{\beta_j}$$

- Thus, a unit change in x_{ij} corresponds to a factor e^{β_j} change in the odds
 - $e^{\beta_j} > 1$: x_j increases the odds
 - $e^{\beta_j} < 1$: x_j decreases the odds

• Consider

$$\hat{y} = \frac{1}{1 + \exp(-(3 + 2x_1 + 0.5x_2 - 3x_1))}$$

- For this model ...
 - x_1 and x_2 increase the odds
 - x_3 decreases the odds
 - x₃ has the largest factor impact on the odds (assuming the features are normalized!)

training logistic regression

- least-squares equations

$$L(\beta) = \prod_{i=1}^{n} p(y_i | x_i, \beta) = \prod_{i=1}^{n} (f_{\beta}(x_i))^{y_i} \cdot (q_{\beta}(x_i))^{y_i} \cdot$$

• And then the log likelihood, which is easier to optimize (like we did with GMMs):

$$l(\beta) = \sum_{i=1}^{n} \log \left[(f_{\beta}(x_i))^{y_i} \cdot (1 - f_{\beta}(x_i))^{1-y_i} \right] = \sum_{i=1}^{n} \left[y_i \log f_{\beta}(x_i) + (1 - y_i) \log(1 - f_{\beta}(x_i)) \right]$$

• With linear regression, we can derive a closed-form solution for the parameters in terms of the

• For logistic regression, let's consider the **likelihood** of the model over data samples i = 1, ..., n:

when $y_i = 1$, we want to maximize $f_{\beta}(x_i)$, and $(1 - f_{\beta}(x_i))^{1-y_i}$ when $y_i = 0$, we want to maximize $1 - f_\beta(x_i)$

• There is no (known) closed form solution to maximize $l(\beta)$, given the $\log f_{\beta}(x_i)$ terms

gradient descent (ascent)

- We want to find β to maximize $l(\beta)$ but no closed-form exists.
- Consider the gradient descent (ascent) algorithm, an iterative procedure for finding a local minimum (maximum) of a function by moving away from (towards) the gradient:

- Here, α^t is the step size of the algorithm at time t
- Since $l(\beta)$ is a **concave** function, we can *guarantee* that gradient ascent will eventually converge to the global **maximum**, so long as certain conditions on α^t are met

gradient ascent t example

train. For this model, we find a log-likelihood function of

$$l(b) = -\left(\frac{b-m}{s}\right)^2$$

for different values of α^t until t = 10 and compare the results.

Suppose we have a single parameter b for some model we are trying to

where *m* and *s* are constants. Derive the iterative procedure for determining the model parameters as a function of the step size α^t . Run the procedure

SOI

We always want to maximize the loglikelihood, so we use gradient *ascent*. Letting b^t be the value of b at iteration t, our update procedure will be:

$$b^{t+1} = b^t + \alpha^t \frac{d}{db} l(b^t)$$

Evaluating the derivative, this become

$$b^{t+1} = b^t - 2\alpha^t \left(\frac{b^t - m}{s^2}\right)$$

$$l(b) = -\left(\frac{b-m}{s}\right)$$

Suppose $\alpha = 0.1$, m = 5, s = 0.7. If we start at $b^0 = 1.1$ (arbitrary), we get

$$b^{1} = 1.1 - 2 \cdot 0.1 \cdot \left(\frac{1.1 - 5}{0.7^{2}}\right) = 2.6$$

$$b^2 = 2.692 - 2 \cdot 0.1 \cdot \left(\frac{2.692 - 5}{0.7^2}\right) = 3.6$$

$$b^{10} = 4.965 - 2 \cdot 0.1 \cdot \left(\frac{4.965 - 5}{0.7^2}\right) = 4.965$$

979

Below, we plot the evolution of b^t over t (see the Jupyter notebook), starting with $b^0 = 1.1$ for $\alpha^t = 0.01, 0.05, 0.1, 0.2, 0.4, 0.5$. Again, we set m = 5 and s = 0.7.

Here, the y-axis is actually -l(b), to make the values positive. Maximizing the loglikelihood is equivalent to minimizing the negative loglikelihood.

Tuning α^t is a very important question!

solution

gradient ascent for logistic regression

Back to logistic regression. Evaluating the partial derivative, \bullet

$$\frac{\partial}{\partial \beta_j} l(\beta) = \frac{\partial}{\partial \beta_j} \sum_{i=1}^n \left[y_i \log f_\beta(x_i) + (1 - y_i) \log(1 - f_\beta(x_i)) \right]$$

$$= \sum_{i=1}^n \left(\frac{y_i}{f_\beta(x_i)} - \frac{1 - y_i}{1 - f_\beta(x_i)} \right) \frac{\partial}{\partial \beta_j} f_\beta(x_i)$$
Partial derivative of with respect with respect with respect with respect of the second se

Thus, we get the following gradient ascent rule for logistic regression: lacksquare

$$\beta_j^{t+1} = \beta_j^t + \alpha^t \left[\sum_{i=1}^n (y_i - f_\beta(x_i)) x_{ij} \right]$$

variable η_t – just right

of loss with respect to $f_{\beta}(x_i)$

tive of logistic function g(v)to $v_i \equiv \beta_1 x_{i1} + \beta_2 x_{i2} + \dots$ $\beta_i x_{ii} + \cdots)$ Partial derivative of v_i with respect to β_i $(x_i))x_{ii}$

in python

- from sklearn.linear_model import LogisticRegression
 - <u>https://scikit-learn.org/stable/</u> modules/generated/ sklearn.linear model.LogisticRegres sion.html
- Most methods (fit, predict, ...) are the same as linear regression
- One difference: Regularization parameter C
 - Higher C: Less regularization
 - Lower C: More regularization

from sklearn.linear model import LogisticRegression from sklearn import metrics logreg = LogisticRegression() logreg.fit(X_train,y_train) y_pred = logreg.predict(X_test) metrics.accuracy score(y test,y _pred)