
ECE 20875
Python for Data Science

classification: logistic
regression

Chris Brinton, Qiang Qiu, and Mahsa Ghasemi

(Adapted from material developed by Profs. Milind Kulkarni,
Stanley Chan, Chris Brinton, David Inouye, Qiang Qiu)

regression with two classes
• With linear regression, we model the relationship

between features and target with a linear equation: 
 

• Now, suppose we have two classes, i.e., .
We could use linear regression, but …

• it will treat the classes as numbers, interpolating
between the points

• it cannot be interpreted as a probability

• how would we generalize to multiple classes?

̂yi = β0 + β1x1 + β2x2 + ⋯ + βmxm

y ∈ {0, 1}

0

1

x

y

0.5

• Need a decision threshold, i.e.,

• In this case, we would never
predict the class ,
regardless of what is!

y = 0.5

y = 0
x

logistic regression model
• Instead of fitting a hyperplane (a line generalized to more than one

dimension), use the logistic function

to translate the output of linear regression to between 
 (as) and (as)

• Note that (useful for derivations)

• This converts the outputs to probabilities:

 

g(v) =
1

1 + e−v

0 v → − ∞ 1 v → ∞

1 − g(v) =
e−v

1 + e−v

fβ(x) = g(β0 + βTx) = P(y = 1 |x)

=
1

1 + exp(− (β0 + β1x1 + β2x2 + ⋯ + βmxm))

0

1

x

y

0.5

• Now the decision rule
•

•

has a probabilistic interpretation

̂y(x) ≥ 0.5 → ̂y = 1
̂y(x) < 0.5 → ̂y = 0

interpreting coefficients
• In linear regression, the effect of a coefficient is clear: means for every unit change

in , the model changes by

• For logistic regression, we need to find a different interpretation, since the weights no
longer have a linear effect

• Consider the odds, i.e., the ratio :

•

βjxj
xj βj

P(y = 1 |x)/P(y = 0 |x)

P(y = 1 |x)
P(y = 0 |x)

=
1

1 + exp(− (β0 + β1x1 + ⋯ + βmxm))
⋅

1 + exp(− (β0 + β1x1 + ⋯ + βmxm))
exp(− (β0 + β1x1 + ⋯ + βmxm))

=
1

exp(− (β0 + β1x1 + ⋯ + βmxm))
= exp(β0 + β1x1 + ⋯ + βmxm)

interpreting coefficients
• Then we consider the ratio of the odds

when is increased by :

• Thus, a unit change in corresponds
to a factor change in the odds

• : increases the odds

• : decreases the odds

xj 1

oddsxj+1

oddsxj

=
exp(⋯ + βj(xj + 1) + ⋯)

exp(⋯ + βjxj + ⋯)
= eβj

xij
eβj

eβj > 1 xj

eβj < 1 xj

̂y =
1

1 + exp(− (3 + 2x1 + 0.5x2 − 3x3))

• For this model …

• and increase the odds

• decreases the odds

• has the largest factor impact
on the odds (assuming the
features are normalized!)

x1 x2

x3

x3

• Consider

training logistic regression
• With linear regression, we can derive a closed-form solution for the parameters in terms of the

least-squares equations

• For logistic regression, let’s consider the likelihood of the model over data samples :

• And then the log likelihood, which is easier to optimize (like we did with GMMs):

• There is no (known) closed form solution to maximize , given the terms

i = 1,...,n

L(β) =
n

∏
i=1

p(yi |xi, β) =
n

∏
i=1

(fβ(xi))yi ⋅ (1 − fβ(xi))1−yi

l(β) =
n

∑
i=1

log [(fβ(xi))yi ⋅ (1 − fβ(xi))1−yi] =
n

∑
i=1

[yi log fβ(xi) + (1 − yi)log(1 − fβ(xi))]
l(β) log fβ(xi)

when , we want to maximize , and
when , we want to maximize

yi = 1 fβ(xi)
yi = 0 1 − fβ(xi)

gradient descent (ascent)
• We want to find to maximize but no closed-form exists.

• Consider the gradient descent (ascent) algorithm, an
iterative procedure for finding a local minimum (maximum)
of a function by moving away from (towards) the gradient:

• Here, is the step size of the algorithm at time

• Since is a concave function, we can guarantee that
gradient ascent will eventually converge to the global
maximum, so long as certain conditions on are met

β l(β)

βt+1
j = βt

j − αt ∂
∂βj

l(βt), βt+1
j = βt

j + αt ∂
∂βj

l(βt)

αt t

l(β)

αt

for non-convex functions,
no guarantee of

convergence to optimum

in general, the step size
must be tuned correctly

Gradient AscentGradient Descent

gradient ascent t example
Suppose we have a single parameter for some model we are trying to
train. For this model, we find a log-likelihood function of

where and are constants. Derive the iterative procedure for determining
the model parameters as a function of the step size . Run the procedure
for different values of until and compare the results.

b

l(b) = − (b − m
s)

2

m s
αt

αt t = 10

solution
We always want to maximize the log-
likelihood, so we use gradient ascent.
Letting be the value of at iteration
, our update procedure will be:

Evaluating the derivative, this becomes:

bt b
t

bt+1 = bt + αt d
db

l(bt)

bt+1 = bt − 2αt (bt − m
s2)

Suppose . If
we start at (arbitrary), we get

…

α = 0.1, m = 5, s = 0.7
b0 = 1.1

b1 = 1.1 − 2 ⋅ 0.1 ⋅ (1.1 − 5
0.72) = 2.692

b2 = 2.692 − 2 ⋅ 0.1 ⋅ (2.692 − 5
0.72) = 3.634

b10 = 4.965 − 2 ⋅ 0.1 ⋅ (4.965 − 5
0.72) = 4.979

l(b) = − (b − m
s)

2

solution
Below, we plot the evolution of over (see the Jupyter notebook), starting with

 for . Again, we set and .
bt t

b0 = 1.1 αt = 0.01, 0.05, 0.1, 0.2, 0.4, 0.5 m = 5 s = 0.7

Here, the -axis is actually
, to make the values

positive. Maximizing the log-
likelihood is equivalent to
minimizing the negative log-
likelihood.

Tuning is a very important
question!

y
−l(b)

αt

gradient ascent for logistic regression
• Back to logistic regression. Evaluating the partial derivative,

• Thus, we get the following gradient ascent rule for logistic regression:

∂
∂βj

l(β) =
∂

∂βj

n

∑
i=1

[yi log fβ(xi) + (1 − yi)log(1 − fβ(xi))]

=
n

∑
i=1 (yi

fβ(xi)
−

1 − yi

1 − fβ(xi)) ∂
∂βj

fβ(xi)

=
n

∑
i=1 (yi

fβ(xi)
−

1 − yi

1 − fβ(xi)) fβ(xi)(1 − fβ(xi))
∂

∂βj
(⋯ + βjxij + ⋯)

=
n

∑
i=1

(yi(1 − fβ(xi)) − (1 − yi)fβ(xi)) xij =
m

∑
i=1

(yi − fβ(xi))xij

βt+1
j = βt

j + αt [
n

∑
i=1

(yi − fβ(xi))xij]

Partial derivative of loss with respect to fβ(xi)

Partial derivative of logistic function
with respect to

g(v)
vi ≡ β1xi1 + β2xi2 + …

Partial derivative of
with respect to

vi
βj

∂
∂v

g(v) =
∂
∂v

(1 + e−v)−1 = − (1 + e−v)−2e−v(−1) = g(v)(1 − g(v))

in python
• from	sklearn.linear_model	import	
LogisticRegression	

• https://scikit-learn.org/stable/
modules/generated/
sklearn.linear_model.LogisticRegres
sion.html	

• Most methods (fit, predict, …) are the
same as linear regression

• One difference: Regularization parameter

• Higher : Less regularization

• Lower : More regularization

C

C

C

from	sklearn.linear_model	
import	LogisticRegression	

from	sklearn	import	metrics	

logreg	=	LogisticRegression()	

logreg.fit(X_train,y_train)	

y_pred	=	logreg.predict(X_test)	

metrics.accuracy_score(y_test,y
_pred)

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

