ECE 20875 Python for Data Science

Chris Brinton, Qiang Qiu, and Mahsa Ghasemi

(Adapted from material developed by Profs. Milind Kulkarni, Stanley Chan, Chris Brinton, David Inouye, Qiang Qiu)

concluding remarks

making predictions from data

visualizing data

building systems for data analysis

collecting/organizing data

ethics

data science is a lot of things

identifying patterns in data

dealing with privacy concerns

interpreting data

analyzing data

writing data analyses

tackling data science problems

- Here's a dataset, what can we learn from it?
 - This is a very high-level yet important question
 - Everything we learned in this class is fundamentally about answering this question
 - You now have a lot of tools in your belt to help you answer it!
 - And more importantly, you know the process involved, which will help you

classes of methods

- The methods we have covered largely fall into two categories:
 - Data engineering
 - Statistics and machine learning
- There are full careers available in both of these disciplines at most companies today
 - But the distinction between the two is beginning to blur more and more

- First, we need to set up methods to process the data in an efficient and scalable manner
- We learned how to do this, mainly in Python:
 - Data structures: Storing data in different formats
 - Functions/methods: Manipulating, translating, and aggregating data efficiently
 - Classes/objects: Containers for data fields
 - Iterators/generators: Finding specific data elements
 - Bash: Redirecting data between different files

data engineering

statistics and machine learning

- Second, we need to model the data, make predictions about the future, and interpret results
- We covered several classes of statistics and ML:
 - Confidence intervals and hypothesis testing
 - Supervised learning: Linear regression, logistic regression, naïve Bayes, kNN
 - Unsupervised learning: K-Means, GMMs
 - Natural language processing: tf-idf
 - Deep learning: Neural networks

- We are in the middle of another AI "revolution"
 - Key challenges in predictability and interpretability
 - The field will continue to evolve over the next decade
- Other courses to take: ullet
 - ECE 302 Probabilistic Methods in ECE
 - ECE 473 Intro. to Artificial Intelligence (some classical AI reasoning)
 - ECE 495 (New) Data Mining: Basic Concepts and Techniques
 - ECE 570 Artificial Intelligence (probabilistic models, project-based)
 - ECE 595 (New) Machine Learning I
 - ECE 595 (New) Deep Learning for Computer Vision
 - More being created as well. And these are just in ECE!

what's next?

thank you for a great semester!

- Please review the course :)
- We hope to see you in other classes down the line!