
ECE 20875
Python for Data Science

confidence intervals and 
hypothesis testing

Chris Brinton, Qiang Qiu, Mahsa Ghasemi

(Adapted from material developed by Profs. Milind Kulkarni, 
Stanley Chan, Chris Brinton, David Inouye, Qiang Qiu)



sampling distribution 

• Recall that by the central limit 
theorem, sample means 
approach a normal distribution


• Can we use this to draw 
conclusions about our data?
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asking questions about data 
• Suppose a factory claims to produce widgets with an average 

weight of 100g and a standard deviation of 22g


• We receive a new shipment of widgets which seem off, and 
we want to see whether the factory has shifted


• Form two hypotheses:


• Null hypothesis ( ): The factory is producing according 
to specification, i.e., .


• Alternative hypothesis ( ): The factory is not producing 
according to specification, i.e., .


• Suppose we weigh 100 of the new widgets (i.e., sample 
 widgets) and find their average weight is 


• What can we conclude?

H0
μ = 100g

H1
μ ≠ 100g

n = 100 x̄ = 95g



asking questions about data 

• Are the widgets in spec? 

• Not as simple as it seems! 


• We have picked one sample of 
widgets, but it could just be a 
bad sample!


• Can we use our sampling 
distribution to help?



100g

hypothesis testing  
• Suppose the null hypothesis is true (new widgets 

are from the same distribution as the original 
widgets) 

• Then the sampling distribution should have its 
mean at g


• And the sampling distribution should have a 
standard deviation of: 
 

             g 


• This is called the standard error (SE)


• Remember,  is from the population, which we 
sometimes have to estimate with  (from the 
sample)

μ = 100

SE ≜ σX̄ =
σ

n
≈

22
10

= 2.2

σ
s𝒩(100, 2.2)



100g

hypothesis testing  
• Remember properties of normal 

distribution: 


• ~68% of points within one σ of 
µ


• ~95% of points within two σ of 
µ


• ~99.7% of points within three 
σ of µ


𝒩(100, 2.2)



hypothesis testing  
• Remember properties of normal 

distribution: 


• ~68% of points within one σ of 
µ


• ~95% of points within two σ of 
µ


• ~99.7% of points within three 
σ of µ


• 95g is between 2 and 3  of σX̄ μ

100g95g

• So what about our sample  of 
95g?


x̄

• Very unlikely for it to have 
come from this distribution!



z-test
• The statistical z-test


• Reasoning about 


• Applicable when we know  or if  is large enough (if we don’t know σ and  is large enough, 
we can estimate with s)


• Can construct sampling distribution assuming null hypothesis is true


• Set a significance level  for the test 

• Fraction of distribution in each “tail” considered anomalous is  (if two-sided test)


• See whether sample  falls in that tail


• If so, reject null hypothesis  in favor of alternative ; otherwise, do not reject (but this 
does not prove that  is true)
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z-test

µ

• Set a significance level  for the test 

• Fraction of distribution considered 
anomalous is  in each “tail” (if two-
sided)


• See whether sample  falls in that tail


• If so, reject null hypothesis  in favor of 
alternative ; otherwise, do not reject (but 
this does not prove that  is true)

α

α/2

x̄

H0
H1

H0

Significance level: α = 0.05

In this case, reject H0

x̄

0.0250.025



p-value for z-test
• We can formalize this logic by calculating 

the p-value


• Place sample  on distribution


• Ask what fraction of distribution is farther 
from the mean  than the sample 


• This is your p-value, which is compared to 
the significance level : 

• Usually ask for  or  (i.e., 
so that  for significance)


• Sometimes  is OK

x̄

μ x̄

α

α = 0.05 0.01
p ≤ 0.05, 0.01

α = 0.1

µµ

p-value

x̄

𝒩(μ, σ2/n)



procedure for z-test
• Compute sample mean 


• Compute standard deviation of sampling 
distribution (standard error)


 


• Compute z-score


 


• Normalizing the sample to the standard 
normal distribution 


• Compute p-value from z-score

x̄

SE =
σ

n

z =
x̄ − μ
SE

𝒩(0,1)
µµ

p-value

z 0

𝒩(0,1)



computing p-value from z-score  
• One way: look up in a standard table


• In Python:


import scipy.stats as stats 
 
# compute z = (x - mu) / SE 
 
p = 2 * stats.norm.cdf(-abs(z)) 

• norm.cdf() is the CDF of , which we 
often denote  

• Why -abs(z)? cdf considers left of the z point, so 
if z is positive, we want to reference -z

N(0,1)
FN(0,1)

µµ

p-value

− |z | 0

𝒩(0,1)

|z |



overview of z-test
• Assumptions needed for statistical test


• Null hypothesis 


• Alternative hypothesis 


• A statistical significance level 


• Equivalent questions (if yes, then reject null hypothesis)


• Is the sample mean, , in tail defined by  of the sampling 
distribution ?


• Is the z-score, , in the tail defined by  of a 

standard normal ?


• Is the p-value, , less than ?

H0

H1

α

x̄ α
≈ 𝒩(μ, σ2

x̄)

z =
x̄ − μx̄

σx̄
=

x̄ − μ
SE

α

𝒩(0,1)

p = 2F𝒩(0,1)( − |z | ) α

µ

Significance level: α = 0.05

x̄

0.0250.025

µµ

p-value

z 0

𝒩(0,1)

𝒩(0,1)

p

zα/2−zα/2

𝒩(μx̄, σ2
x̄)



back to our original example
• 





• So we calculate:








• Conclusion:


• Significant at  (reject )


• Not significant at  (cannot reject )

μ = 100, σ = 22

x̄ = 95, n = 100

z =
x̄ − μ

σ/ n
=

95 − 100

22/ 100
= − 2.273

p = 2 ⋅ F(z |0,1) = 0.023

α = 0.1,0.05 H0

α = 0.01 H0

µµ

p-value = 0.023

−2.273 0

𝒩(z |0,1)

2.273



comparing two means 
• What if you have two populations, and you want to know 

whether their means are statistically different?


• Sample 1: Sample size , from pop. mean , variance 


• Sample 2: Sample size , from pop. mean , variance 


• Hypotheses


•  The means are the same, i.e., 


•  The means are different, i.e., 


• Can use two-sample z-test


• Under null hypothesis, sampling distribution of difference 
between two means has:


 

n0 μ0 σ2
0

n1 μ1 σ2
1

H0 : μ0 = μ1

H1 : μ0 ≠ μ1

μ = μ0 − μ1 = 0 σ =
σ2

0

n0
+

σ2
1

n1

• Test point is 


• z-score is 

x̄ = x̄0 − x̄1

(x̄ − μ)/σ

µµx̄

𝒩(μ, σ2)

μ = 0



confidence intervals 

• We see these a lot: Ranges above and 
below values on a graph


• What do they mean?


• Surprisingly tricky question to answer
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intuition of confidence intervals 
• A confidence interval is a range around the mean which says 

something about how “good” your estimation procedure is


• How “good” is your choice of number of samples, given the 
variance in the population


• Interpretation of a (95%) confidence interval:


• if I were to repeat the experiment a large number of times, 95 
percent of confidence intervals would contain the population 
mean


• before I run the experiment, there is a 95 percent chance that the 
population mean will fall within the computed confidence interval


• if the population mean is inside the confidence interval, it would 
not be statistically significant (informally, you wouldn’t be 
surprised!)
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the first interpretation
• If I were to repeat the experiment a large number of times, 95 percent of 

confidence intervals would contain the population mean 

• In the diagram below, each vertical bar is one confidence interval 
calculated for one experiment


• For a 95% confidence interval, we expect 95% of them will include μ

source: NYW-confidence-interval.svg 
Wikipedia user Tsyplakov



confidence intervals more formally
• If the population parameter is outside the c% 

confidence interval, then an event occurred that had 
a probability of less than of happening


• Note that we are setting  ahead of time (unlike with 
hypothesis testing, where we figure out how likely/
unlikely something is after the fact)


• Wide confidence interval: The variance of your 
data is high (and/or your sample size is small), so 
we need a wide interval to make the above 
statement true.


• Narrow confidence interval: The variance of your 
data is small (and/or your sample size is large), so 
we don’t need a wide interval to make the above 
statement true.

(100 − c) %

c



computing confidence intervals 
• Conceptually related to z-tests, but the perspective is reversed


• For what sampling distributions (centered at the population 
mean), would our sample mean NOT be surprising?


• Note: Our confidence interval is centered around the sample 
mean (instead of the hypothesized population mean)


• Remember definition of z-score:


 


• And p-value:


p = 2 * sp.stats.norm.cdf(-abs(z)) 

• If  is the desired confidence level (here in decimal form), what 
 do we need such that ?

z =
x̄ − μ

σ/ n

c
z p ≤ (1 − c)

Extreme values of  such that  is still unsurprisingμ x̄

Possible values of  such that  would be unsurprisingμ x̄



• Call this 


• Compute in Python as follows:


z_c = stats.norm.ppf(1 - (1 - c)/2) 

• While norm.cdf goes from z-score to probability, 
norm.ppf goes from probability to z-score


• Now we can answer the question: What range of  
would be “unsurprising” at % confidence level? 

 

• This is your % confidence interval 

zc

μ
c

zc =
x̄ − μ

σ/ n
→ μ ∈ (x̄ −

zc ⋅ σ

n
, x̄ +

zc ⋅ σ

n ) = (lc, uc)

c

computing confidence intervals 

zc

1 −
1 − c

2

x̄lc uc

lc uc

lc uc

increasing

c



95g

back to our original example
• Let’s calculate 90%, 95%, and 99% confidence intervals for 


• Recall that our sample had





• Thus, the confidence intervals are:





• For 90%, 95%, 99%, . Thus, 
      
      
     

μ

x̄ = 95g, σ = 22g, n = 100

μ ∈ (95 −
σ

n
⋅ zc, 95 +

σ

n
⋅ zc) = (95 − 2.2 ⋅ zc, 95 + 2.2 ⋅ zc)

zc = 1.645, 1.960, 2.576
90 % : (91.38, 98.62)
95 % : (90.69, 99.31)
99 % : (89.33, 100.67)

How would we make the intervals narrower 
for the same levels of confidence?



we’ve been fudging 
• Recall that to use the -distribution, we 

must either know  or have large enough 



• The student’s t-distribution and t-test 
is used when the normal approximation 
does not hold:


• i.e., when we don’t know  (which we 
usually do not) and when 


• Can use this to reason about , 
including building confidence intervals 
and conducting hypothesis tests

z
σ

n

σ
n < 30

μ



student’s t-distribution 
• Similar to the standard  normal distribution 

(density shown to the right)


• Symmetric about mean


• Bell curve shaped


• But has fatter tails, i.e., more weight of the distribution 
away from the mean


• Accounts for outliers better


• Parameter of the distribution is the degrees of freedom 


• : One less than the number of samples


• Looks more and more like the standard normal as 

𝒩(0,1)

v

v = n − 1

n → ∞

f X
(x

)



t-test and confidence intervals
• Works the same as the -test, except


• Use  instead of 


• Compare to the -distribution


• Computing the test statistic:


• First get the standard deviation of the sample:





• Then we get the “ -score”:


z

s σ

t

s =
1

n − 1

n

∑
i=1

(xi − x̄)2

t

t =
x̄ − μ

s/ n

Compare to the 
formula for z

f X
(x

)

• Then we get the -value: 
 
p = 2 * stats.t.cdf(-abs(t), df)


• And for confidence intervals, we find the 
-score corresponding to : 
 
t_c = stats.t.ppf(1 - (1 - c)/2, df)

p

t
c



one-sided tests
• Sometimes we are only interested in values 

departing from the mean in one direction


• This is a one-sided or one-tailed test


• For example, suppose we want to assess 
whether our widgets are being produced at 
a significantly higher weight:


•  


• 


• How does the -value compare between 
one and two-sided tests? 

H0 : μ ≤ 100g

H1 : μ > 100g

p

Null hypothesis is 
always the logical 

“opposite"
• Any given datapoint has half the 

p-value in a one-sided test than it 
does in a two-sided test


• We also do not divide  by 2 for 
a one-sided test, because all the 
area is now in one tail

α



simple extensions
• What do we do in a two-sample test when one of the samples violates the 

normal approximation assumptions?


• Use a two-sample t-test


• Can we build a confidence interval around a mean when the normal 
approximation is violated?


• Yes, as discussed, just use the -statistic in place of the -score


• What if we are only interested in a confidence interval on one side (e.g., a 
lower bound or an upper bound)?


• Can use a one-sided interval, where one of the bounds is replaced by 
 or 


• When computing  or , instead of   (where dividing by 2), 
use  since there is only one tail

t z

−∞ +∞

zc tc 1 − (1 − c)/2
1 − (1 − c) = c

c

zc


