
regular expressions

ECE 20875

Python for Data Science
Chris Brinton, Qiang Qiu, and Mahsa Ghasemi

(Adapted from material developed by Profs. Milind Kulkarni,
Stanley Chan, Chris Brinton, David Inouye, Qiang Qiu)

basic text processing
• Python lets you do a lot of simple text processing with strings:

• But what if we want to do fancier processing? More complicated
substitutions or searches?

s = “hello world”

s.count(“l”) #returns 3

s.endswith(“rld”) #returns True

“ell” in s #returns True

s.find(“ell”) #returns 1

s.replace(“o”, “0”) #returns “hell0 w0rld”

s.split(“ “) #returns [“hello”, ‘world”]

“XX“.join([“hello”, “world”]) #returns “helloXXworld”

See https://docs.python.org/3/library/stdtypes.html#string-methods for more

https://docs.python.org/3/library/stdtypes.html#string-methods

regular expressions
• Powerful tool to find/replace/count/capture patterns in strings: regular

expressions (regex)

• Can do very sophisticated text manipulation and text extraction 
 
 
 
 
 

• Useful for data problems that require extracting data from a corpus

import re

s = "hello cool world see”

#find all double letters that are one character from the end of a word

p = re.compile(r'((.)\2)(?=.\b)')

#replace those double letters with their capital version

s1 = p.sub(lambda match : match.group(1).upper(), s)

print(s1) #prints ‘heLLo cOOl world see’

regular expressions (regex)
• A means for defining regular languages

• A language is a set (possibly infinite) of strings

• A string is a sequence of characters drawn from
an alphabet

• A regular language is one class of languages:
those defined by regular expressions (ECE 369
and 468 go into more details, including what
other kinds of languages there are)

• Use: Find whether a string (or a substring) matches
a regex (more formally, whether a substring is in
the language)

regular expressions
• A single string is a regular expression: “ece 20875”, “data science”

• Note: the empty string is also a valid regular expression

• All other regular expressions can be built up from three operations:

1. Concatenating two regular expressions: “ece 20875 data science”

2. A choice between two regular expressions: “(ece 20875) | (data
science)”

3. Repeating a regular expression 0 or more times “(ece)*”

building regular expressions
• A regular expression in Python is compiled:

import re

p = re.compile(“ece (264|20875|368)”)

• This creates special code for matching a regular expression (ECE 369/468
discusses the machinery behind this)

• Can then look for the regular expression in other strings:

p.match(“ece 264”) #returns a match object 
p.match(“hello ece 20875”) #returns None 
p.search(“hello ece 368”) #returns a match object

• match checks only at the beginning of the string, while search looks
throughout, and both only return the first occurrence

inspecting a match object
• We want to see what the match is, so we can set it to a variable: 

x = p.search(“hello ece 368”)

• If we print x, we will see the match object (more on objects later) 
print(x) # Returns <re.Match object; span=(6, 13) 
 # match=‘ece 368’>

• To see the actual match string, we use group(): 
x.group() # Returns “ece 368”

• To see the index of the match, we use span(): 
x.span() # Returns (6,13)

extra syntax for regex
• . #wildcard, matches any character (except newline)

• ^(abc) #matches ‘abc’ only at the start of the string

• (abc)$ #matches ‘abc’ only at the end of the string

• a? #matches 0 or one ‘a’

• a* #matches zero or more ‘a’s

• a+ #matches one or more ‘a’s

• [abc] #character class, matches ‘a’ or ‘b’ or ‘c’

• [^abc] #matches any character except ‘a’ or ‘b’ or ‘c’

• [a-z] #character class, matches any letter between ‘a’
and ‘z’

extra syntax for regex
• \s #matches whitespace

• \S #matches non-whitespace

• \d #matches digit

• \D #matches non-digit

• \w #matches any word character, which is alphanumeric
and the underscore (equivalent to [a-zA-Z0-9_])

• \W #matches any non-word character

s = “hello 12 hi 89. Howdy 34”

p = re.compile(“\d+”)

result = p.findall(s)

print(result)

#Output: ['12', '89', '34']

lookahead characters
• \b : matches the empty string at

the beginning or end of a word

• \B : matches the empty string
not at the beginning or end of a
word

• (?=abc) : matches if “abc” is what comes next

• (?!abc) : matches if “abc” is not what comes next

• These are zero-width assertions: They don’t cause the engine to advance
through the string, and they are not part of the resulting match
Other regex examples: https://www.pythonsheets.com/notes/python-rexp.html

https://www.pythonsheets.com/notes/python-rexp.html

groups
• Can use parentheses to capture groups

• Groups together characters (like in math): (abc)*
means repeat abc, but abc* means repeat c

• Groups are captured by regular expressions

• match.group(k) returns the contents of the
kth group in the matched text

• Group 0 is always the whole matched regex

• match.groups() returns all subgroups in a
list

groups
• Groups can be nested — count

based on number of left parentheses

• Groups can be named:
re.compile(“(?P<foo>abc)”)

• Can refer to groups within a regular
expression (or a substitution):

• \k refers to the content of the kth
group

• (?P=foo) refers to the content of
the group named foo

x = “dog = (?P<pet>\w+), cat
= (?P=pet)”

y = "random_text dog =
sammy, cat = sammy"

z = re.compile(x).search(y)

print(z.group(“pet”))

#prints sammy

substitution
• There is also a replacement command sub()

• p.sub(a,b) rewrites b with any match to p replaced by a

• For example, we can generate the following regex, with groups:

• p = re.compile(r’hello (\w*)’) #match “hello …”

• Note that prefixing a string with `r’ makes it a raw string literal that tells Python not to
process it (useful when trying to match characters like “\n”)

• We can write the following replacements, using the groups if we want:

• p.sub(r’goodbye \1’, ‘well hello ece’) #returns ‘well goodbye ece’

• p.sub(r’\1 goodbye \1’, ‘well hello X’) #return ‘well X goodbye X’

