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basic text processing
• Python lets you do a lot of simple text processing with strings:


• But what if we want to do fancier processing? More complicated 
substitutions or searches?

s = “hello world”

s.count(“l”)        #returns 3

s.endswith(“rld”)   #returns True

“ell” in s          #returns True

s.find(“ell”)       #returns 1

s.replace(“o”, “0”) #returns “hell0 w0rld”

s.split(“ “)        #returns [“hello”, ‘world”]

“XX“.join([“hello”, “world”]) #returns “helloXXworld”

See https://docs.python.org/3/library/stdtypes.html#string-methods for more

https://docs.python.org/3/library/stdtypes.html#string-methods


regular expressions
• Powerful tool to find/replace/count/capture patterns in strings: regular 

expressions (regex)


• Can do very sophisticated text manipulation and text extraction 
 
 
 
 
 

• Useful for data problems that require extracting data from a corpus

import re

s = "hello cool world see”

#find all double letters that are one character from the end of a word

p = re.compile(r'((.)\2)(?=.\b)')

#replace those double letters with their capital version

s1 = p.sub(lambda match : match.group(1).upper(), s)

print(s1) #prints ‘heLLo cOOl world see’



regular expressions (regex)
• A means for defining regular languages 

• A language is a set (possibly infinite) of strings


• A string is a sequence of characters drawn from 
an alphabet


• A regular language is one class of languages: 
those defined by regular expressions (ECE 369 
and 468 go into more details, including what 
other kinds of languages there are)


• Use: Find whether a string (or a substring) matches 
a regex (more formally, whether a substring is in 
the language)



regular expressions
• A single string is a regular expression: “ece 20875”, “data science”


• Note: the empty string is also a valid regular expression


• All other regular expressions can be built up from three operations:


1. Concatenating two regular expressions: “ece 20875 data science”


2. A choice between two regular expressions: “(ece 20875) | (data 
science)”


3. Repeating a regular expression 0 or more times “(ece)*”



building regular expressions
• A regular expression in Python is compiled:


import re

p = re.compile(“ece (264|20875|368)”)


• This creates special code for matching a regular expression (ECE 369/468 
discusses the machinery behind this)


• Can then look for the regular expression in other strings:

p.match(“ece 264”)         #returns a match object 
p.match(“hello ece 20875”) #returns None 
p.search(“hello ece 368”)  #returns a match object


• match checks only at the beginning of the string, while search looks 
throughout, and both only return the first occurrence



inspecting a match object
• We want to see what the match is, so we can set it to a variable: 

x = p.search(“hello ece 368”)


• If we print x, we will see the match object (more on objects later) 
print(x)    # Returns <re.Match object; span=(6, 13) 
               #           match=‘ece 368’>


• To see the actual match string, we use group(): 
x.group()  # Returns “ece 368”


• To see the index of the match, we use span(): 
x.span()  # Returns (6,13)



extra syntax for regex
• . #wildcard, matches any character (except newline)


• ^(abc) #matches ‘abc’ only at the start of the string


• (abc)$ #matches ‘abc’ only at the end of the string


• a? #matches 0 or one ‘a’


• a* #matches zero or more ‘a’s


• a+ #matches one or more ‘a’s


• [abc] #character class, matches ‘a’ or ‘b’ or ‘c’


• [^abc] #matches any character except ‘a’ or ‘b’ or ‘c’


• [a-z] #character class, matches any letter between ‘a’ 
and ‘z’



extra syntax for regex
• \s #matches whitespace


• \S #matches non-whitespace


• \d #matches digit


• \D #matches non-digit


• \w #matches any word character, which is alphanumeric 
and the underscore (equivalent to [a-zA-Z0-9_])


• \W #matches any non-word character

s = “hello 12 hi 89. Howdy 34”

p = re.compile(“\d+”)


result = p.findall(s)

print(result)


#Output: ['12', '89', '34']



lookahead characters
• \b : matches the empty string at                                                                                 

the beginning or end of a word


• \B : matches the empty string                                                                                           
not at the beginning or end of a                                                                               
word


• (?=abc) : matches if “abc” is what comes next


• (?!abc) : matches if “abc” is not what comes next


• These are zero-width assertions: They don’t cause the engine to advance 
through the string, and they are not part of the resulting match
Other regex examples: https://www.pythonsheets.com/notes/python-rexp.html

https://www.pythonsheets.com/notes/python-rexp.html


groups
• Can use parentheses to capture groups


• Groups together characters (like in math): (abc)* 
means repeat abc, but abc* means repeat c


• Groups are captured by regular expressions


• match.group(k) returns the contents of the 
kth group in the matched text


• Group 0 is always the whole matched regex


• match.groups() returns all subgroups in a 
list



groups
• Groups can be nested — count 

based on number of left parentheses


• Groups can be named: 
re.compile(“(?P<foo>abc)”)


• Can refer to groups within a regular 
expression (or a substitution): 


• \k refers to the content of the kth 
group


• (?P=foo) refers to the content of 
the group named foo

x = “dog = (?P<pet>\w+), cat 
= (?P=pet)”


y = "random_text  dog = 
sammy, cat = sammy"


z = re.compile(x).search(y)


print(z.group(“pet”))


#prints sammy



substitution
• There is also a replacement command sub()


• p.sub(a,b) rewrites b with any match to p replaced by a


• For example, we can generate the following regex, with groups:


• p = re.compile(r’hello (\w*)’) #match “hello …”


• Note that prefixing a string with `r’ makes it a raw string literal that tells Python not to 
process it (useful when trying to match characters like “\n”)


• We can write the following replacements, using the groups if we want:


• p.sub(r’goodbye \1’, ‘well hello ece’) #returns ‘well goodbye ece’


• p.sub(r’\1 goodbye \1’, ‘well hello X’) #return ‘well X goodbye X’


