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Abstract— Federated learning has emerged recently as a
promising solution for distributing machine learning tasks
through modern networks of mobile devices. Recent studies have
obtained lower bounds on the expected decrease in model loss that
is achieved through each round of federated learning. However,
convergence generally requires a large number of communication
rounds, which induces delay in model training and is costly
in terms of network resources. In this paper, we propose a
fast-convergent federated learning algorithm, called FOLB, which
performs intelligent sampling of devices in each round of model
training to optimize the expected convergence speed. We first
theoretically characterize a lower bound on improvement that
can be obtained in each round if devices are selected according
to the expected improvement their local models will provide to
the current global model. Then, we show that FOLB obtains this
bound through uniform sampling by weighting device updates
according to their gradient information. FOLB is able to handle
both communication and computation heterogeneity of devices
by adapting the aggregations according to estimates of device’s
capabilities of contributing to the updates. We evaluate FOLB
in comparison with existing federated learning algorithms and
experimentally show its improvement in trained model accuracy,
convergence speed, and/or model stability across various machine
learning tasks and datasets.

Index Terms— Federated learning, distributed optimization,
fast convergence rate.

I. INTRODUCTION

OVER the past decade, the intelligence of devices at
the network edge has increased substantially. Today,

smartphones, wearables, sensors, and other Internet-connected
devices possess significant computation and communication
capabilities, especially when considered collectively. This has
created interest in migrating computing methodologies from
cloud to edge-centric to provide near-real-time results [1].
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Fig. 1. Different from standard federated learning algorithms which are based
on uniform sampling, our proposed methodology improves convergence rates
through intelligent sampling that factors in the values of local updates that
devices provide.

Most applications of interest today involve machine learning
(ML). Federated learning (FL) has emerged recently as a
technique for distributing ML model training across edge
devices. It allows solving machine learning tasks in a dis-
tributing setting comprising a central server and multiple
participating “worker” nodes, where the nodes themselves
collect the data and never transfer it over the network, which
minimizes privacy concerns. At the same time, the federated
learning setting introduces challenges of statistical and system
heterogeneity that traditional distributed optimization methods
[2]–[11] are not designed for and thus may fail to provide
convergence guarantees.

One such challenge is the number of devices that must par-
ticipate in each round of computation. To provide convergence
guarantees, recent studies [12]–[15] in distributed learning
have to assume full participation of all devices in every round
of optimization, which results in excessively high communica-
tion costs in edge network settings. On the other hand, [6], [8],
[10], [16]–[19] violate the statistical heterogeneity property.
In contrast, FL techniques provide flexibility in selecting only
a fraction of clients in each round of computations [20].
However, such a selection of devices, which is often done
uniformly, naturally causes the convergence rates to be slower.

In this paper, we take into consideration that in each com-
putation round, some clients provide more valuable updates
in terms of reducing the overall model loss than others,
as illustrated in Figure 1. By taking this into account, we show
that the convergence in federated learning can be vastly
improved with an appropriate non-uniform device selection
method. We first theoretically characterize the overall loss
decrease of the non-uniform version of the recent state-of-
the-art FedProx algorithm [21], where clients in each round
are selected based on a target probability distribution. Under
such a non-uniform device selection scheme, we obtain a lower
bound on the expected decrease in global loss function at every
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computation round at the central server. We further improve
this bound by incorporating gradient information from each
device into the aggregation of local parameter updates and
characterize a device selection distribution, named LB-near-
optimal, which can achieve a near-optimal lower bound over
all non-uniform distributions at each round.

Straightforwardly computing such distribution in every
round involves a heavy communication step across all devices
which defeats the purpose of federated learning where the
assumption is that only a subset of devices participates in each
round. We address this communication challenge with a novel
federated learning algorithm, named FOLB, which is based
on a simple yet effective re-weighting mechanism of updated
parameters received from participating devices in every round.
With twice the number of devices selected in baseline feder-
ated learning settings, i.e., as in the popular FedAvg and Fed-
Prox algorithms, FOLB achieves the near-optimal decrease in
global loss as that of the LB-near-optimal device selection
distribution, whereas with the same number of devices, FOLB
provides a guarantee of global loss decrease close to that of
the LB-near-optimal and even better in some cases.

Another challenge in federated learning is device hetero-
geneity, which affects the computation and communication
capabilities across devices. We demonstrate that FOLB can
easily adapt to such device heterogeneity by adjusting its
re-weighting mechanism of the updated parameters returned
from participating devices. Computing the re-weighting coef-
ficients involves presumed constants which are related to
the loss function characteristics and solvers used in distrib-
uted devices, and more importantly, may not be available
beforehand. Even estimating those constants may be difficult
and incur considerable computation and communication over-
head. Thus, we show a greater flexibility of FOLB that its
re-weighting mechanism can group all presumed constants into
a single hyper-parameter which can be optimized with line
search.

A. Outline and Summary of Contributions

Compared to related work (discussed next), in this paper
we make the following contributions:

• We provide a theoretical characterization of fast fed-
erated learning based on a non-uniform selection of
participating devices. In particular, we establish lower
bounds on decrease in global loss given a non-uniform
device selection from any target distribution, and compare
these bounds directly with FedProx. We demonstrate
how local gradient information from each devices can
be aggregated to improve the lower bound and also
compute a near-optimal distribution for device selection
(Section III).

• We propose FOLB, a federated learning algorithm which
employs an accurate and communication-efficient approx-
imation of a near-optimal distribution of device selection
to accelerate convergence (Section IV).

• We show a successful generalization on FOLB in fed-
erated learning with computation and communication
heterogeneity among participating devices (Section V).

• We perform extensive experiments on synthetic, vision,
and language datasets to demonstrate the success of
FOLB over FedAvg and FedProx algorithms in terms
of model accuracy, training stability, and/or convergence
speed (Section VI).

B. Related Work

Distributed optimization has been vastly studied in the
literature [2]–[11] which focuses on a datacenter environment
model where (i) the distribution of data to different machine
is under control, e.g., uniformly at random, and (ii) all the
machines are relatively close to one another, e.g., minimal
cost of communication. However, those approaches no longer
work on the emerging environment of distributed mobile
devices due to its peculiar characteristics, including non-i.i.d.
and unbalanced data distributions, limited communication, and
heterogeneity of computation between devices. Thus, many
recent efforts [6], [8], [10], [12]–[24] have been devoted to
coping with these new challenges.

Most of the existing works [6], [8], [10], [12]–[19] either
assume the full participation of all devices or violate sta-
tistical heterogeneity property inherent in our environment.
McMahan et al. [20] was the first to define federated learning
setting in which a learning task is solved by a loose federation
of participating devices which are coordinated by a central
server and proposed the heuristic FedAvg algorithm. FedAvg
runs through multiple rounds of optimization, in each round,
it randomly selects a small set of K devices to perform
local stochastic gradient descent with respect to their local
data. Then, the locally updated model parameters are sent
back to the central server where an averaging is taken and
regarded as new parameters. It was shown in [20] to perform
well in terms of both performance and communication cost.
More recently, [25] shows convergence rate of FedAvg when
the cost function is strongly convex and smooth. Federated
multi-task learning was proposed in [26] that allows slightly
different models in different devices and framed the problem
in multi-task learning framework. More recent work in [23],
[24] propose federated optimizers and algorithms that improve
over FedAvg in terms of convergence rate subject to a
number of assumptions about the loss functions and non-i.i.d.
distributions of data. However, heterogeneity in computation
and communication across devices have not been a focus of
these models.

Very recently, [21] proposed FedProx with the main differ-
ence from FedAvg of adding a proximal term in every local
loss function to keep the updated parameters across devices
more similar. FedProx follows the same steps as FedAvg,
however, it provides convergence rate for both convex and
non-convex losses and deals with statistical heterogeneity.
FedProx also allows any local optimizer at the local devices.
Our work utilizes the idea of adding a proximal term to local
loss function, however, our proposed algorithm FOLB takes a
unique approach that aims at a near-optimal device selection
distribution to maximize the loss decrease at every round of
optimization. On the other hand, FedProx and FedAvg select
devices uniformly at random in each round.
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Other aspects of federated learning have also been studied,
such as privacy of user data [27]–[31], fairness in federated
learning [32], federated learning over communication systems
[33]–[37], and federated learning for edge networks [38]–[40].
We refer the interested reader to comprehensive surveys in
[41], [42] and references therein for more details.

II. PRELIMINARIES AND MODELING ASSUMPTIONS

We first formalize federated learning, including the
standard system model (Section II-A), learning algorithms
(Section II-B), and common theoretical assumptions
(Section II-C).

A. System and Learning Model

Consider a network of N devices, indexed k ∈ {1, . . . , N},
where each device possesses its own local (private) dataset
Dk. Each data point d ∈ Dk is assumed to contain a feature
vector xd and a target variable yd. The objective of federated
learning is to train a machine learning (ML) model of interest
over this network, i.e., to learn a mapping gw : xd → ŷd from
a given input sample xd to a predicted output ŷd parameterized
by a vector w, with each device processing its own data to
minimize communication overhead.

For our purposes, an ML model is specified accord-
ing to its parameter vector w and loss function f(w) =
(1/|D|)∑d∈D l(w,xd, yd) to be minimized. Here, D is the
training dataset available, and l(w,xd, yd) represents the error
between ŷd and yd (e.g., the squared distance). Thus, we seek
to find w that minimizes f(w) over the data D = ∪kDk

in the network. In federated learning, this minimization is
not performed directly, as each device k only has access to
Dk. Defining Fk(w) = (1/|Dk|)

∑
d∈Dk

ld as the local loss
function at k over Dk, if we assume that |Di| = |Dj | ∀i, j,
i.e., each device processes the same amount of data, we can
express the optimization as an average over the Fk(w):

min
w

f(w), where f(w) :=
1
N

N∑
k=1

Fk(w). (1)

More generally, nodes may process different amounts of data,
e.g., due to heterogeneous compute capabilities. In such cases,
we can replace the factor 1/N with pk = |Dk|/|D| for a
weighted average of the Fk(w) [21], [43]. This is the approach
we take throughout this paper.

Federated learning algorithms differ in how (1) is solved.
In our case, we will assume that a central server is available to
orchestrate the learning across the devices. Such a scenario is
increasingly common in fog or edge computing systems, where
an edge server may be connected to several edge devices, e.g.,
in a smart factory [43]. We will next introduce the standard
algorithms for federated learning in these environments.

B. Standard Federated Learning Algorithms

Federated learning algorithms generally solve (1) in three
steps: local learning, aggregation, and synchronization, which
are repeated over several rounds [20]. In each round t,
the server selects a set Kt of K devices among the N total

to update the current estimate wt for the optimal set of
parameters w�. Each device k ∈ Kt selected then updates
wt based on its local loss Fk(w), producing wt+1

k , and sends
this back to the server. The server then aggregates these locally
updated parameters according to

wt+1 =
1
K

∑
k∈Kt

wt+1
k , (2)

and synchronizes the devices with this update before beginning
the next round.

FedAvg [20] is the standard federated learning algo-
rithm that uses this framework. In FedAvg, the loss Fk(w)
is directly minimized during the local update step, using
gradient descent techniques. Formally, each device calcu-
lates wt+1

k = wt − η∇Fk(wt), where ∇Fk(wt) =
(1/|Dk|)

∑
d∈Dk

∇l(wt,xd, yd) is the average of the loss
gradient over device k’s data. It is also possible to use multiple
iterations of local updates between global aggregations [15].

More recently, FedProx was introduced [21], which differs
from FedAvg in the local update step: instead of minimizing
Fk(w) at device k, it minimizes

hk(w,wt) = Fk(w) +
μ

2

∥∥w − wt
∥∥2
. (3)

The proximal term μ
2 ‖w − wt‖2 added to each local loss

function brings two modeling benefits: (i) it restricts the
divergence of parameters between devices that will arise due to
heterogeneity in their data distributions, and (ii) for appropriate
choice of μ, it will turn a non-convex loss function Fk(w) into
a convex hk(w,wt) which is easier to optimize. The approach
we develop beginning in Section III will build on FedProx.
Note that by setting μ = 0, hk(w,wt) = Fk(w) and we
get back the setting in FedAvg. Thus, our algorithm FOLB
naturally applies on FedAvg and our theoretical results still
hold if all Fk(w), k = 1, . . . , N are strongly convex.

C. ML Model Assumptions

For theoretical analysis of federated learning algorithms,
a few standard assumptions are typically made on the ML
models (see e.g., [15], [21], [43]). We will employ the follow-
ing in our analysis:

Assumption 1 (L-Lipschitz Gradient): Fk(w) is
L-Lipschitz gradient for each device k ∈ {1, . . . , N},
i.e., ‖∇Fk(w) −∇Fk(w′)‖ ≤ L ‖w − w′‖ for any two
parameter vectors w,w′. This also implies (via the triangle
inequality) that that the global f(w) is L-Lipschitz gradient.

Assumption 2 (B-Dissimilar Gradients): The gradient of
Fk(w) is at most B-dissimilar from f(w) for each k,
i.e., ‖∇Fk(w)‖ ≤ B ‖∇f(w)‖ for each w.

Assumption 3 (σ-Bounded Hessians): The smallest eigen-
value of the Hessian matrix ∇2 Fk is −σ for each k,
i.e., ∇2 Fk 	 −σI for the identity matrix I. This implies that
hk(w,wt) in (3) is μ′-strongly convex, where μ′ = μ− σ.

Assumption 4 (γ-Inexact Local Solvers): Local updates
will yield a γ-inexact solution wt+1

k of minw hk(w,wt) for
every k and t, i.e.,

∥∥∇hk(wt+1
k ,wt)

∥∥ ≤ γ ‖∇hk(wt,wt)‖.
We assume that γ is in the range [0, 1] since γ = 0 corresponds
to solving to optimality, and γ = 1 happens with the initial
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parameters wt+1
k = wt

k and since the function h(w,wt)
is convex, the local optimization algorithm at device should
reduce the gradient norm, e.g., gradient descent algorithm.

In [15], [43], Assumptions 3&4 are replaced with a stronger
assumption that the Fk(w) are convex. This corresponds to
the case where σ ≤ 0 in Assumption 3, meaning ∇2 Fk is
positive semidefinite, and FedAvg can be used to minimize
the Fk(w) directly without a proximal term. Similar to [21],
the results we derive in this work will more generally hold
for non-convex Fk(w), which is true of many ML models
today (e.g., neural networks). We also note that FedProx
makes a similar assumption to Assumption 4 in deriving its
convergence bound [21], i.e., on the precision of the local
solvers. In Section V, we will present a technique where each
device k estimates its own γk based on its local gradient
update.

Technical Approach: In the following sections, we first
investigate the general non-uniform device selection in fed-
erated learning and show that in each round, a device’s
contribution in reducing the global loss function is bounded
by the inner product between its local gradient and the global
one. Hence, a near-optimal device selection distribution is
introduced, that samples devices according to the inner prod-
ucts between their local and global gradients. Unfortunately,
trivial solutions to compute or estimate this distribution are
excessively expensive in communication demand. We next
introduce FOLB to address this challenge with the core idea
of using 2 independent sets of devices, one for estimating the
global gradient and another for carrying out local optimization.
The locally updated parameters from the second set are then
re-weighted by the inner products between their gradients and
the estimated global gradient and aggregated to form a new
global model. We also analyze the version using a single set
of devices and how to handle communication and computation
heterogeneity with FOLB.

III. FedNu: NON-UNIFORM FEDERATED LEARNING

In this section, we develop our methodology for improv-
ing the convergence speed of federated learning. This
includes non-uniform device selection in the local update
(Section III-A), and inclusion of gradient information in the
aggregation (Section III-B). Our theoretical analysis on the
expected decrease in loss in each round of learning leads to
a selection distribution update that achieves an efficient lower
bound (Section III-C).

A. Non-Uniform Device Selection

As discussed in Section II-B, standard federated learning
approaches select a set of K devices uniformly at random for
local updates in each round. In reality, certain devices will
provide better improvements to the global model than others
in a round, depending on their local data distributions. If we
can estimate the expected decrease in loss each device will
provide to the system in a particular round, then the device
selections can be made according to those that are expected to
provide the most benefit. This will in turn minimize the model
convergence time.

Algorithm 1 Federated Learning With Non-Uniform
Device Selection

Input : K,T, μ, γ,w0, N, P t
k k = 1, . . . , N

1 for t = 0, . . . , T − 1 do

2 Server samples (with replacement) a multiset St of K

devices according to P t
k, k = 1, . . . , N

3 Server sends wt to all devices k ∈ St

4 Each device k ∈ St finds a wt+1
k that is a γt

k-inexact

minimizer of argminw hk(w,wt), as defined in (3)

5 Each device k ∈ St sends wt+1
k back to the server

6 Server aggregates the wt+1
k according to

wt+1 = 1
K

∑
k∈St

wt+1
k

Formally, we let P t
k be the probability assigned to

device k for selection in round t, where 0 ≤ P t
k ≤ 1 and∑N

k=1 P
t
k = 1 ∀t. In our federated learning scheme, during

round t, the server chooses a multiset St of size K by
sampling K times from the distribution P t

1 , . . . , P
t
N . Note

that this sampling occurs with replacement, i.e., a device may
appear in St multiple times and K is the cardinality of this
multiset. Each unique k ∈ St then performs a local update on
the global model estimate wt to find a γ-inexact minimizer
wt+1

k of hk(w,wt) in (3), which the server aggregates to
form wt+1. Algorithm 1 summarizes this procedure, assuming
averaging for aggregation; if k appears in St more than once,
this aggregation effectively places a larger weight on wt+1

k .
Given the introduction of P t

k, we call our methodology
FedNu, i.e., non-uniform federated learning. A key aspect will
be developing an algorithm for P t

k estimation in each round.
The following theorem gives a lower bound on the expected
decrease in loss achieved from round t of Algorithm 1, which
will assist in this development:

Theorem 1: With loss functions Fk satisfying Assumptions
1-4, supposing that wt is not a stationary solution, in Algo-
rithm 1, the expected decrease in the global loss function
satisfies

E[f(wt+1)]

≤ f(wt) − 1
Kμ

E

[ ∑
k∈St

〈∇f(wt),∇Fk(wt)〉
]

+B
(L(γ + 1)

μμ′ +
γ

μ
+
BL(1+γ)2

2μ′2
) ∥∥∇f(wt)

∥∥2
, (4)

where μ′ = μ− σ > 0, and the expectation E is with respect
to the choice of K devices following probabilities P t

k. As a
corollary, after T rounds,

E[f(wT )]

≤ f(w0) − 1
Kμ

E

[ T−1∑
t=0

∑
k∈St

〈∇f(wt),∇Fk(wt)〉
]

+B
(L(γ + 1)

μμ′ +
γ

μ
+
BL(1 + γ)2

2μ′2
) T−1∑

t=0

∥∥∇f(wt)
∥∥2
,

where the expectation is with respect to the random selections
of S0, S1, . . . , ST−1.
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The full proof of Theorem 1 as well as proofs of later
theorems/propositions are presented in appendix.

Theorem 1 provides a bound on how rapidly the global
loss can be expected to improve in each iteration based on
the selection of devices in Algorithm 1. It shows a depen-
dency on parameters L, B, γ, and μ of the ML model.
In particular, we see that E[f(wt+1)] ∝ B2, meaning that
as the dissimilarity between local and global model gradients
grows larger, the bound weakens. Intuitively,B depends on the
variance between local data distributions: as the datasets Dk

approach being independent and identically distributed (i.i.d.)
across k, the gradients will become more similar, and B will
approach 1. As they become less i.i.d., however, the gradients
will diverge, and B will increase. Hence, Theorem 1 gives
quantitative insight into the effect of data heterogeneity on
federated learning convergence.

Compared to the bound of FedProx [21], which was shown
to work on the particular uniform distribution, our result in
Theorem 1 is more general and applicable for any given
probability distribution. Moreover, our result offers a new
approach to optimize convergence rate through maximizing
the inner product term E

[∑
k∈St

〈∇f(wt),∇Fk(wt)〉]. The
proof of Theorem 1 also takes a different path compared
to that of FedProx in [21], which relies on the uniform
distribution to first establish intermediate relations of f(wt+1)
and f(wt) with f(w̄t+1), where w̄t+1 = 1

N

∑N
k=1 wt+1

k , and
then connects f(wt+1) with f(wt). Our result applies for
any distribution and thus required direct proof of the relation
between f(wt+1) and f(wt) via bounding each of the terms
given by the L-Lipschitz continuity of f .

B. Aggregation With Gradient Information

An immediate suggestion from the expectation term in
Theorem 1 is that any devices which have a negative inner
product 〈∇f(wt),∇Fk(wt)〉 < 0 between their gradients
∇Fk(wt) and the global gradient ∇f(wt) would actually hurt
model performance. This is due to the averaging technique
used for model aggregation in Algorithm 1, which is common
in federated learning algorithms due to its simplicity [15], [21],
[43]. It is consistent with the characteristics of distributed
gradient descent [5], [7], where the global gradient (i.e.,
across the entire dataset) can reduce the overall loss while
individual local gradients (i.e., at individual devices) that are
not well aligned with the global objective – in this case,
those with negative inner product – will not help improve the
overall loss.

If we assume the server can estimate when a device’s inner
product is negative, then we can immediately improve FedNu
with an aggregation rule of

wt+1 =wt+
1
K

∑
k∈St

sign(〈∇f(wt),∇Fk(wt)〉)(wt+1
k −wt)

(5)

in Algorithm 1 based on the signum function. This
negates local updates from devices in St that have
〈∇f(wt),∇Fk(wt)〉 < 0, and provides a stronger
lower-bound than given in Theorem 1:

Proposition 1: With the same assumptions on Fk and wt

as in Theorem 1, with (5) used as the aggregation rule in
Algorithm 1 (Line 6), the expected decrease in the global loss
satisfies

E[f(wt+1)]

≤ f(wt) − 1
Kμ

E

[ ∑
k∈St

|〈∇f(wt),∇Fk(wt)〉|
]

+B

(
L(γ+1)
μμ′ +

γ

μ
+
BL(1+γ)2

2μ′2

)∥∥∇f(wt)
∥∥2
. (6)

Proposition 1 is clearly stronger than Theorem 1: by incor-
porating gradient information, the inner products are replaced
with their absolute values, making the expected decrease in
loss faster. We will next propose a method for setting the
selection probabilities P t

k to optimize this bound, and then
develop algorithms to estimate the inner products.

C. LB-Near-Optimal Device Selection

The set St of selected devices affects Theorem 1 through the
expectation E[

∑
k∈St

|〈∇f(wt),∇Fk(wt)〉|]. To maximize
the convergence speed, we seek to minimize the upper bound
on the loss update in each round t, which corresponds to the
following optimization problem for choosing St:

maximize
P t

k

E

[ ∑
k∈St

|〈∇f(wt),∇Fk(wt)〉|
]

subject to
∑

k

P t
k = 1, P t

k ≥ 0 ∀k.

This problem is difficult to solve analytically given the sam-
pling relationship between St and P t

k.1 It is clear, however,
that the solution which maximizes this expectation will assign
higher probability of being selected to devices with higher
inner product |〈∇f(wt),∇Fk(wt)〉|. A natural candidate
which satisfies this criterion is P t

k ∝ |〈∇f(wt),∇Fk(wt)〉|.
We call this distribution LB-near-optimal, i.e., near-optimal
lower-bound, formally defined as follows:

Definition 1 (LB-Near-Optimal Selection Distribution):
The selection distribution Plb

t
k achieving a near-optimal

lower-bound on loss decrease in Theorem 1 is called the
LB-near-optimal selection distribution, and has the form

Plb
t
k =

|〈∇f(wt),∇Fk(wt)〉|∑N
k′=1 |〈∇f(wt),∇Fk′ (wt)〉| , (7)

with the corresponding lower bound of expected loss being

E[f(wt+1)] ≤ f(wt) − 1
μ

N∑
k=1

|〈∇f(wt),∇Fk(wt)〉|Plb
t
k

+B

(
L(γ + 1)
μμ′ +

γ

μ
+
BL(1 + γ)2

2μ′2

)∥∥∇f(wt)
∥∥2
. (8)

1) Comparison to FedProx [21]: Our lower bound in (8)
of Definition 1, corresponding to the near-optimal device
selection distribution and achieved by our proposed algorithm

1Formally, the probability mass function of St is formed from K repeated
trials of the N -dimensional categorical distribution [44] over P t

1 , . . . , P t
N .
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FOLB in Section IV, is more general than the bound of Fed-
Prox in [21], which is restricted to the uniform distribution.
Specifically, our bound in (8) is stronger if

1
μ

N∑
k=1

|〈∇f(wt),∇Fk(wt)〉|Plb
t
k

≥
(1
μ
−B(1+γ)

√
2

μ′√K −LB2(1+γ)2

μ′2K
(2
√

2K+2)
)∥∥∇f(wt)

∥∥2
,

which holds since

1
μ

N∑
k=1

|〈∇f(wt),∇Fk(wt)〉|Plb
t
k

=
1
μ

∑N
k=1 |〈∇f(wt),∇Fk(wt)〉|2∑N
k′=1 |〈∇f(wt),∇Fk′ (wt)〉|

≥ 1
μ

1
N

N∑
k=1

|〈∇f(wt),∇Fk(wt)〉| (Cauchy-Schwarz)

≥ 1
μ
| 1
N

N∑
k=1

〈∇f(wt),∇Fk(wt)〉| (triangle inequality)

≥ 1
μ
|〈∇f(wt),∇f(wt)〉| =

1
μ

∥∥∇f(wt)
∥∥2
.

The last inequality holds due to f(wt) = 1
N

∑N
k=1 Fk(wt).

2) Convergence Property: Starting from the lower-bound
in (8), we can show the convergence rate in the form of
the gradient converging to zero when the parameter settings
satisfy certain constraints, similarly to [21]. Furthermore,
since the bound in (8) is stronger than that of FedProx
in [21], the corresponding convergence rate is also faster.
Specifically, applying (8) for all t = 0, . . . , T gives us a
series of inequalities, and taking the sum of these yields
the desired form of gradient convergence (see [21] for more
details).

In Definition 1, the expectation term in the bound on
E[f(wt+1)] has been computed in terms of the selection distri-
bution Plb

t
k. Unfortunately, the values of 〈∇f(wt),∇Fk(wt)〉

needed to compute the Plb
t
k cannot be evaluated at the server at

the beginning of round t, since the local and global gradients
are not available at the time of device selection. In the rest of
this section, and in Section IV, our goal will be to develop a
federated learning algorithm that (i) achieves the performance
of the distribution in Definition 1, i.e., provides the same loss
decrease at every round, and (ii) results in an efficient imple-
mentation in a client-server network architecture. We refer to
such an algorithm as an LB-near-optimal-efficient federated
learning algorithm:

Definition 2 (LB-Near-Optimal-Efficient Federated Learn-
ing Algorithm): An iterative federated learning algorithm is
called LB-near-optimal-efficient if it achieves the near-optimal
lower-bound of loss decrease in Definition 1, which corre-
sponds to the near-optimal selection distribution at every
round, and does not require communication between devices
that is significantly more expensive than standard federated
learning.

D. Naive Algorithms for Fast Convergence
We first present two algorithms that are straightforward

modifications of the methods described in this section towards
the goal of satisfying Definition 2. We will see that each of
these fails to satisfy one criterion in Definition 2, however,
motivating our main algorithms in Section IV.

1) Direct Computation of LB-Near-Optimal Distribu-
tion: The most straightforward approach to achieving
LB-near-optimality is enabling computation of the LB-
near-optimal distribution Plb

t
k at the beginning of round t and

using this to sample devices. This approach requires the server
to send wt to all N devices, have them compute ∇Fk(wt),
and then send it back to the central server. With these
values, the server can exactly calculate the LB-near-optimal
distribution through (7).

Clearly, this algorithm will obtain the LB-near-optimal
distribution, leading to a fast convergence rate (assuming that
this initial round of communication does not significantly
increase the time of each round t). However, this algorithm
requires one iteration of expensive communication between the
server and all N devices. The gradient ∇Fk(wt) is the same
dimension as wt, and the purpose of algorithms like FedAvg
and FedProx selecting K of N devices is to avoid this
excessive communication between a server and edge devices
in contemporary network architectures [43].

As an aside, if we were able to afford this extra communica-
tion of gradients in each round, then why not just carry out the
exact (centralized) gradient descent at the server? Federated
learning would still be beneficial in this scenario for two
reasons. First, during their local updates, each device usually
carries out multiple iterations of gradient descent, saving
potentially many more rounds of gradient communication
to/from the server [15]. Second, while batch gradient descent
converges slowly, federated learning has a flavor of stochastic
gradient descent which tends to converge faster [16].

2) Sub-Optimal Estimation of LB-Near-Optimal Distrib-
ution: A possible workaround for the issue of expensive
communication in the first approach is to further upper bound
|〈∇f(wt),∇Fk(wt)〉| ≤ ‖∇f(wt)‖ ‖∇Fk(wt)‖ using the
Cauchy-Schwartz inequality. Since ‖∇f(wt)‖ is the same for
all the devices, we can take P t

k ∝ ‖∇Fk(wt)‖. Hence, while
this approach still requires the server to send out wt to all
devices for them to compute gradients, each device k only
needs to send back a single number, ‖∇Fk(wt)‖. This is much
less expensive given the fact that edge devices tend to have
larger download than upload capacities, typically by an order
of magnitude [43].

While this algorithm is closer to the communication
efficiency of standard federated learning algorithms, there
is no guarantee on how accurately ‖∇f(wt)‖ ‖∇Fk(wt)‖
approximates |〈∇f(wt),∇Fk(wt)〉|, which could result in
an inaccurate estimate of Plb

t
k. Thus, it may not satisfy the

LB-near-optimal criteria of Definition 2.
We demonstrate the better performance when using directly

or estimating the LB-near-optimal selection distribution than
existing state-of-the-art federated learning algorithms in Fig. 2.
Here we run the above two naive algorithms targeting the

Authorized licensed use limited to: Purdue University. Downloaded on December 22,2020 at 14:36:39 UTC from IEEE Xplore.  Restrictions apply. 



NGUYEN et al.: FAST-CONVERGENT FL 207

Fig. 2. Training loss and test accuracy of our motivating idea and state-
of-the-art approaches on MNIST dataset (µ = 1, see Sec. VI for details on
experimental settings).

LB-near-optimal distribution along with FedAvg and
FedProx, and observe significant improvements over both
FedAvg and FedProx in terms of convergence speed. Our
methods quickly converge after only a few rounds of com-
munication. This motivates our proposed algorithm, FOLB,
which also targets the LB-near-optimal distribution, however,
removes the communication burden in the naive algorithms.

IV. FOLB: AN LB-NEAR-OPTIMAL-EFFICIENT

FEDERATED LEARNING ALGORITHM

As discussed in Section III-C, the LB-near-optimal selection
distribution given in Definition 1 for maximizing the loss
decrease in round t cannot be computed by the server at the
beginning of round t, since it involves all local gradients of
the current global estimate wt. The straightforward approx-
imation using Cauchy-Schwartz still requires one iteration
of additional communication where the server sends wt to
all devices, and does not guarantee LB-near-optimality. With
the goals of fast convergence and low communication over-
head in mind, the challenges we face in developing an LB-
near-optimal-efficient federated learning algorithm for FedNu
described in Definition 2 are two-fold:
(1) How can we accurately estimate (preferably with per-

formance guarantees) the LB-near-optimal probability
distribution without involving all local gradients?

(2) How can we obtain this estimate efficiently, i.e., with
minimal communication overhead on top of standard
federated learning algorithms?

In this section, we develop a federated learning algorithm
called FOLB (Section IV-A) that addresses these challenges.
The key idea of FOLB is a novel calibration procedure
for aggregating local model updates from devices selected
uniformly at random. This calibration weighs the updates
received by their estimated importance to the model, which we
show matches the performance of Theorem 1 (Section IV-B).
We also demonstrate a technique to further optimize the
communication demand of FOLB (Section IV-C).

A. Proposed FOLB Algorithm

The FOLB algorithm is summarized in Algorithm 2. At the
start of round t, the server selects two multisets St

1 and St
2

of devices of size K uniformly at random, and sends wt to
each k ∈ St

1 and k′ ∈ St
2. Each k ∈ St

1 computes its γt
k-

inexact local update wt+1
k , sending both wt+1

k and ∇Fk(wt)

Algorithm 2 FOLB Algorithm for LB-Near-
Optimal-Efficient Federated Learning

Input : K,T, μ, γ,w0, N

1 for t = 0, . . . , T − 1 do

2 Server selects two multisets St
1 and St

2 each of K

devices uniformly at random

3 Server sends wt to all k ∈ St
1 and k′ ∈ St

2

4 for each device k ∈ St
1 do

5 Device k computes its gradient ∇Fk(wt)
6 Device k sends ∇Fk(wt) back to the server

7 Device k finds a γt
k-inexact minimizer of

arg minw hk(w,wt), as defined in (3)

8 Device k sends wt+1
k back to the server

9 for each device k′ ∈ St
2 do

10 Device k′ computes its gradient ∇Fk′(wt)
11 Device k′ sends ∇Fk′ (wt) back to the server

12 Server computes ∇1 f(wt),∇2 f(wt) according to

(10) and aggregates the wt+1
k (9)

back to the server. Each k′ ∈ St
2, by contrast, only computes

∇Fk′ (wt) and sends this back, for the purpose of calibrating
the updates. Then, instead of simple averaging, the server
aggregates the received update parameters according to the
following rule:

wt+1 = wt +
∑
k∈St

1

〈∇Fk(wt),∇1 f(wt)〉∑
k′∈St

2
〈∇Fk′ (wt),∇2 f(wt)〉Δwt+1

k ,

(9)

where

∇if(wt) =
1
K

∑
k∈St

i

∇Fk(wt), (10)

is the gradient of the global loss f(wt) estimated from the
local losses across devices in St

i , i ∈ {1, 2}, and Δwt+1
k =

wt+1
k − wt is the change that device k ∈ St

1 made to wt at
round t during its local update.

The intuition behind (9) is that the local update of each
device k ∈ St

1 is weighted by a measure of how correlated
its gradient ∇Fk(wt) is with the global gradient ∇f(wt).
This correlation is assessed relative to ∇1 f(wt), which is
an unbiased estimate of ∇f(wt) using gradient information
obtained from St

1. The weights are normalized relative to
a second unbiased estimate of total correlation among K
devices, obtained over St

2.

B. Proof of LB-Near-Optimality
We now prove that FOLB obtains the same lower-bound of

loss decrease at every round as the LB-near-optimal selection
distribution. In particular, we have the following theorem:

Theorem 2: In Algorithm 2, with the same assumptions on
Fk and wt as in Theorem 1, the lower-bound achieved on the
expected decrease of the global loss in round t matches (8),
i.e., the LB-near-optimal selection probability distribution.
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The following lemma provides a key insight into how St
1

and St
2 can be used to estimate the global gradient when

computing the inner products with local gradients, and will
help in proving Theorem 2 in Appendix D.

Lemma 1: Let ∇if(wt) be defined as in (10). Then,

E

[ ∑
k∈St

1

〈∇Fk(wt),∇1 f(wt)〉2
]

=
K

N

N∑
k=1

〈∇f(wt),∇Fk(wt)〉2, (11)

and

E

[ ∑
k′∈St

2

〈∇Fk′ (wt),∇2 f(wt)〉
]

≤ K

N

N∑
k′=1

|〈∇f(wt),∇Fk′ (wt)〉|. (12)

C. Optimizing FOLB Communication Efficiency

Theorem 2 establishes the LB-near-optimal property of
FOLB. Algorithm 2 does, however, call for local updates from
2K devices across the two sets St

1 and St
2 in each round (and

for St
1, communication of both the updates and the gradients),

whereas standard federated learning algorithms only sample
K devices.

To reduce the communication demand further, we can make
two practical adjustments to Algorithm 2. First, we can set
St

1 = St
2 in each round, i.e., only selecting one set of K

random devices and using the received gradients both for
parameter updates and for normalizing the weights on these
updates, dropping the total to K . Second, similar to the
technique in Section III-B, rather than discarding updates from
devices with 〈∇Fk(wt),∇1 f(wt)〉 < 0, we can aggregate
the negatives of their Δwt+1

k , thereby leveraging all K . Our
modified aggregation rule becomes

wt+1 = wt +
∑
k∈St

1

〈∇Fk(wt),∇1 f(wt)〉∑
k′∈St

1
|〈∇Fk′ (wt),∇1 f(wt)〉|Δwt+1

k .

(13)

A key step in the proof of Theorem 2, for (31), relied on the
independence between sampling St

1 and St
2. With St

1 = St
2,

this clearly no longer holds. Instead, we have the following:
Proposition 2: In FOLB, with the same assumptions on Fk

and wt as in Theorem 1, and (13) used as the aggregation
rule in Algorithm 2, the lower-bound on expected decrease in
the global objective loss function satisfies

E[f(wt+1)]

≤ f(wt) − K

μN

N∑
k=1

|〈∇f(wt),∇Fk(wt)〉|

+B

(
L(γ + 1)
μμ′ +

γ

μ
+
BL(1 + γ)2

2μ′2

)∥∥∇f(wt)
∥∥2
. (14)

Proof: The proof is similar to that of Proposition 2,
with the key difference being that Lemma 1 now holds with
equality. �

Comparison: In comparing our result in Proposition 2
with that of the LB-near-optimal selection distribution
in Definition 1, the new bound is better when
K
μN

∑N
k=1 |〈∇f(wt),∇Fk(wt)〉| > 1

μ

∑N
k=1 |〈∇f(wt),

∇Fk(wt)〉|Plb
t
k. This is the case when the data distribution

across different devices becomes more uniform. To see
this, let us consider two extreme cases: (i) under a uniform
distribution of data, Plb

t
k ≈ 1/N and the new bound is K

times better than the LB-near-optimal bound; (ii) when only
one device has data, then the new bound is K/N times worse
than the LB-near-optimal bound. In practice, the scenarios
closer to case 1 will be much more prevalent than those
similar to case 2, and thus most of the time, the new bound
tends to be better than the earlier one.

V. HANDLING COMPUTATION AND COMMUNICATION

HETEROGENEITY

A practical consideration of distributed optimization on edge
devices is the heterogeneity of computing power and commu-
nication between those devices and the central server. In this
section, we show how FOLB can be easily adapted to handle
heterogeneity by tweaking the aggregation rule slightly.

A. Modeling Heterogeneous Communication and
Computation

Each device participating in the federated learning process
has a different communication delay when communicating
with the central server and computation resources reserved
for optimization. We model these two aspects as follows:

1) Communication Delay: For each device k, we assume
that the time it takes for one round of communication between
device k and central server is bounded above by T c

k . This value
T c

k can be obtained with high confidence by taking the 99th
percentile of the distribution used to model the communication
delay, e.g. exponential distribution.

2) Computation Resources: Each device k can only reserve
a certain amount of resources to carry out optimization of the
local function hk(w;wt). Thus, we relax our assumption of
having an uniform γ-inexact local solver in all devices to allow
each device to have particular γk-inexact local solver where
γk can differ at every round of optimization and computed

as γk = ‖∇h(wt+1
k ,wt

k)‖
‖∇h(wt

k,wt
k)‖ . Note that we assume γk ∈ [0, 1] as

in the case of local solvers being gradient descent algorithm.
Hence, let τ is the amount of time for an optimization round
dictated by the central server, we allow each selected device k
to perform any optimization within τ−T c

k time and return the
updated parameter wt+1

k and γk back to the central server. This
scheme allows great flexibility and practicality since a device
can use any amount of resources available and any local
optimization algorithm that it has access to at every round.

B. FOLB With Communication and Computation
Heterogeneity

We show that FOLB can easily adapt to the inherent
heterogeneity nature of communication and computation by
adjusting it aggregation scheme to find a near-optimal conver-
gence rate.
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Fig. 3. Effectiveness of our proposed aggregation rule in FOLB compared to simple averaging in FedProx (similarly in FedAvg) across a wide range of
proximal parameter µ.

1) New Loss Bound With Heterogeneity Presence: We
first prove the following theorem showing the decrease of
loss function in non-uniform FedProx with heterogeneity
presence:

Theorem 3: With the same assumptions as in Theorem 1
and the presence of communication and computation het-
erogeneity, suppose that wt is not a stationary solution,
in non-uniform FedProx, we have the following expected
decrease in the global objective function:

E[f(wt+1)] ≤ f(wt) − 1
Kμ

E

[ ∑
k∈St

(
〈∇f(wt),∇Fk(wt)〉

−B

(
L

μμ′ +
1
μ

+
3 LB

2 Kμ′2

)
γk

∥∥∇f(wt)
∥∥2

)]

+
(
LB2

2μ′2 +
LB

μμ′

)∥∥∇f(wt)
∥∥2
, (15)

where the expectation is with respect to the choice of K
devices following probabilities P t

k, k = 1, . . . , N .
2) Implications of Theorem 3: Theorem 3 states that in the

presence of communication and computation heterogeneity,
the bound of loss decrease at a round depends not only on
the inner products between local and global gradients but also
on the optimality of the solutions returned by the individual
devices. In other words, a device is more beneficial to the
global model if the following two conditions hold:

(1) The local gradient ∇Fk(wt) is well aligned with the
global gradient ∇f(wt).

(2) It has enough resources to perform optimization to find
a decent solution, i.e., small γk.

Both of these conditions are intuitive and reflecting the impor-
tance of each device during the learning process. Unfortu-
nately, we cannot evaluate any of the two criteria before
selecting devices without expensive prior communication and
computation. However, we show that FOLB can handle these
challenges easily by tweaking the aggregation rule.

3) Near-Optimal Selection Distribution: From
Theorem 3, we can obtain a similar optimal selection
probability distribution to that of Theorem 1 which
focuses on devices with high values of It

k =
〈∇f(wt),∇Fk(wt)〉−B

(
L

μμ′ + 1
μ + 3 LB

2 Kμ′2

)
γk ‖∇f(wt)‖2.

In other word, a near-optimal distribution will select device
k with probability:

Plbh
t
k =

|It
k|∑N

k′=1 |It
k′ |

(16)

with the loss decrease satisfies:

E[f(wt+1)]

≤ f(wt) − 1
μ

N∑
k=1

(
〈∇f(wt),∇Fk(wt)〉

−B

(
L

μμ′ +
1
μ

+
3 LB

2 Kμ′2

)
γk

∥∥∇f(wt)
∥∥2

)
Plbh

t
k

+
(
LB2

2μ′2 +
LB

μμ′

)∥∥∇f(wt)
∥∥2
. (17)

FOLB aggregation for communication and computation
heterogeneity. FOLB with heterogeneity of communication
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Fig. 4. Performance comparison between FOLB and FedProx considering
different neural network models, i.e., CNN and MLP with 3 layers, over the
MNIST dataset and µ = 0.01. FOLB results in a more stable model accuracy
and outperforms FedProx.

and computation adopts the following aggregation rule:

wt+1 = wt +
∑
k∈St

1

It
1k∑

k′∈St
1
|It

1k′ |Δwt+1
k , (18)

where It
1k = 〈∇1 f(wt),∇Fk(wt)〉−B

(
L

μμ′ + 1
μ + 3 LB

2 Kμ′2

)
γk ‖∇1 f(wt)‖2, and ∇1 f(wt) is defined in (10).

4) Avoiding Constant Estimations: In the new FOLB
that deals with heterogeneity, updating the global parameter
according to Equation (18) becomes more complicated com-
pared to Equation (13) due to involving the set of constants
B,L, μ′ which need to be estimated before hand or on-the-air.
Instead of requiring all these constants to be estimated, we pro-
pose to use a hyper-parameter ψ = B

(
L

μμ′ + 1
μ + 3 LB

2 Kμ′2

)
that will be learned though hyper-parameter tuning similarly
to μ in FedProx. For tuning ψ, we can use a simple line search
with a exponential step size, e.g. ψ ∈ {10−1, 1, 10, 102} which
is used in our experiments and found to be effective.

VI. EXPERIMENTS

In this section, we experimentally compare our proposed
algorithm with existing state-of-the-art approaches and demon-
strate faster convergence across different learning tasks in both
synthetic and real datasets. We also confirm the advantage of
taking into consideration the individual device optimization
capability in the presence of communication and computation
heterogeneity, showing our approach more suitable for practi-
cal federated learning implementations.

A. Experimental Settings

We first describe our setup of datasets, compared algorithms,
testing environment and how statistical and system heterogene-
ity is simulated. We adopt closely the setup in a very recent
work [21] on FedProx and provide details of their setup and
the changes we made here for completeness.

1) Dataset: We use the a standard set of datasets used
in multiple other works on federated learning [8], [21]. Par-
ticularly, we use 10-class MNIST [45], 62 class Federated
Extended MNIST (FEMNIST ) [46], and synthetic datasets
[8], [21] to study with a multinomial logistic regression
model, which extends the binary logistic regression model
to multi-class scenarios and uses a different linear predictor
function for each class to predict the probability that an

Fig. 5. Performance comparison between FOLB and FedProx considering
different number of devices. With increasing the number of devices in each
round, FOLB converges faster and stabilizes quicker than FedProx. We use
MNIST dataset with a 3-layer CNN and µ = 0.01.

observation belongs to that class. The synthetic datasets are
generated with Gaussian distributions which are parameter-
ized with a set of control parameters to vary the level of
heterogeneity (see [8], [21] for more details). Synthetic_iid
and Synthetic_1_1 denote two datasets with no heterogeneity
(i.i.d. distribution of data) and high heterogeneity, respectively.
For non-convex setting, similarly to [20], [21], we consider
a text sentiment analysis task on tweets using Sent140 [47]
dataset and next-character prediction task on the dataset of
The Complete Works of William Shakespeare [20]. For MNIST,
FEMNIST, sent140, and Shakespeare, we consider 1000, 200,
143, 772 devices, respectively. Particularly, for MNIST and
FEMNIST datasets, the data is distributed on each device
following a power law under the constraint that each device
gets images from only two digits. For Sent140, each twitter
account corresponds to one device, while in Shakespeare, each
speaking role corresponds to one device.

2) Compared Algorithms: We compare FOLB with current
state-of-the-art algorithms in the federated learning setting,
including the recent FedProx [21] and the original FedAvg
[20]. For both FOLB, FedProx and FedAvg, we use k =
10 devices in each round of optimization and investigate
the effects of K on performance in a later set of exper-
iments. For FedProx, we set μ = 1, 1, 1, 0.001, and 0.01,
for 5 datasets respectively, as suggested in the original
paper [21]. For our algorithm FOLB, we apply a simi-
lar line search on μ ∈ {10−4, 10−3, 10−2, 10−1, 1} and
ψ ∈ {10−1, 1, 10, 102} when FOLB with heterogeneity
consideration is tested. Here, we consider the versions of
FOLB that only samples one set of devices in each round
of optimization for communication efficiency, i.e., we use
the aggregation scheme in (13) and (18). Thus, the com-
munication cost of FOLB, FedAvg and FedProx are
the same.

3) Computation and Communication Heterogeneity Simu-
lation: For all algorithms, we simulate the computation and
communication heterogeneity by allowing each device to pick
a random number between 1 and 20 to be the number of
gradient descent steps that the device is able to perform when
selected. We initialize the same seed in all the compared algo-
rithms to make sure that these numbers of gradient descents are
consistent on all the algorithms. For FedProx and FedAvg,
the received parameters from local devices in every round are
simply averaged to get the new set of global model parameters.
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Fig. 6. Testing accuracy with different non-IID settings of the MNIST dataset, i.e., randomly assigning images of only a fixed number of different digits to
each device. FOLB performs better than FedProx specially in the most extreme non-IID setting.

Fig. 7. Training loss of FOLB, FedProx and FedAvg on various datasets using linear model (multinomial logistic regression). FOLB can reach lower loss
value than the others.

Fig. 8. Testing accuracy of FOLB, FedProx and FedAvg on various datasets using linear model (multinomial logistic regression). FOLB can reach higher
level of accuracy than the others.

4) Environment: We performed all experiment on a 8 ×
2080Ti GPU cluster using TensorFlow [48] framework. Our
codebase is based on the publicly available implementation of
FedProx [21] approach.2 For each dataset, we use stochastic
gradient descent (SGD) as a local solver.

B. Experimental Results

1) Quantifying the Effectiveness of the Proposed Aggrega-
tion Rule: We first compare our new aggregation rule with the
simple averaging in FedProx (similarly in FedAvg). We vary
μ with values from the set {10−4, 10−3, 10−2, 10−1, 1} in both
FedProx and FOLB, and fix ψ = 0 in FOLB. The training loss
and test accuracy on the first real dataset MNIST are shown
in Fig. 3.

From Fig. 3, we observe the better performance of our
proposed aggregation rule compared to that of simple aver-
aging in FedProx (and similarly in FedAvg). Specifically,
with FOLB, the loss value is always smaller than that of
FedProx and its accuracy is higher than that of FedProx at

2https://github.com/litian96/FedProx

the same time. This is especially significant in early iterations,
showing faster convergence rate of FOLB. Our results prove
the better effectiveness of our proposed aggregation scheme
that principally aims at maximizing a lower-bound of loss
decrease in every iteration (4).

Moreover, the better performance of our aggregation rule
is more compelling with smaller values of μ. This obser-
vation again verifies the critical role of our lower-bound
in (4) and our goal of maximizing it. Since maximiz-
ing the lower-bound leads to our approach of maximiz-
ing E

[∑
k∈St

〈∇f(wt),∇Fk(wt)〉
]
, which is weighted by

1
μ in (4), with smaller μ, the results of maximizing

E
[∑

k∈St
〈∇f(wt),∇Fk(wt)〉

]
have bigger impact in max-

imizing the lower-bound. This observation of having better
actual loss values draws a strong correlation between our
lower-bound in (4) and the actual loss decrease and maxi-
mizing the lower-bound is sensible.

a) Experiments with different neural network models: In
earlier experiments, we used a multinomial logistic regression
model. Now we compare the performance of FOLB and
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Fig. 9. Training loss of FOLB, FedProx and FedAvg on various datasets
using non-linear model (LSTM). FOLB can reach lower loss value than the
others.

FedProx when using a Convolutional Neural Network (CNN)
or Multi-Layer Perceptron (MLP) with 3 layers each. The
results are illustrated in Fig. 4. We find that FOLB converges
faster and is much more stable compared to FedProx.

b) Experiments with different number of devices in each
round: We present the results with a varying number of
devices participating in each round in Fig. 5. As expected,
more devices make convergence stable and fast. However,
we find this effect significantly better with FOLB compared
to FedProx, thanks to our aggregation scheme. With a small
number of devices in each round, FOLB is quite similar to
FedProx since our aggregation scheme becomes closer to
simple averaging.

c) Experiments with different non-IID settings: We simu-
late various non-IID scenarios on the MNIST dataset by only
assigning random images from a fixed number of different
digits to each device, i.e., 1, 2, 5, 10. For example, in the most
extreme case, each device only has random images from only
one digit. The results are demonstrated in Fig. 6 and show
a recurring observation that FOLB outperforms FedProx,
especially in the extreme cases of non-IID (common in reality).

2) Comparisons on Various Datasets and Models: We com-
pare FOLB with FedProx and FedAvg algorithms. Figs. 7
and 8 present the training loss and test accuracy of all the
algorithms on linear model (multinomial logistic regression)
and Figs. 9 and 10 report results for non-linear model (LSTM).
It is evident that FOLB consistently outperforms FedProx
and FedAvg in terms of both reducing loss and improving
accuracy. For example, on the Synthetic_1_1 dataset, FOLB
is able to reach a low loss value and high accuracy level
in only within 20 iterations while the other two methods
never reach that level within 100 iterations and seem to
converge at much higher loss and lower accuracy. On the
other datasets, FOLB reduces loss value (and also increasing
accuracy) faster than both FedProx and FedAvg, and can even
reach lower loss and higher accuracy level than the other two
algorithms.

In Table I, we report the number of optimization rounds
that each algorithm needs to perform in order to reach a
certain accuracy level (this is chosen based on the maximum
accuracy that all three algorithms can reach on each dataset).
We see that, usually FOLB only requires half number of
rounds taken by FedProx andFedAvg to reach the same

Fig. 10. Testing accuracy of FOLB, FedProx and FedAvg on various
datasets using non-linear model (LSTM). FOLB can reach higher level of
accuracy than the others.

TABLE I

NUMBER OF ROUNDS OF EACH METHOD TO REACH A CERTAIN

ACCURACY LEVEL ON EACH DATASET (NOTE THAT ON SHAKE-
SPEARE, FedAvg FAILED TO REACH THE GIVEN ACCURACY

WITHIN 40 ROUNDS)

level of accuracy. For example, on Synthetic_1_1 dataset,
FOLB only needs 19 rounds while FedProx and FedAvg
require 154 and 177 rounds respectively. One exception is
on Synthetic_iid where data is independent and identically
distributed across different devices, however, FOLB still need
fewer rounds than FedProx and FedAvg. Note that due to
computation heterogeneity, even on Synthetic_iid, FedAvg
performs poorly compared to FedProx and FOLB which
directly address heterogeneity. These results again verify the
faster convergence rate of FOLB compared to FedProx and
FedAvg.

3) FOLB With and Without Communication and Computa-
tion Heterogeneity Consideration: In this last set of exper-
iments, we compare FOLB with different aggregation rules,
i.e., (13) and (18) which are corresponding to before and
after taking into account the heterogeneity of communication
and computation respectively. Fig. 11 shows the test accuracy
of these two variants on Synthetic_1_1 and EMNIST, where
the performance of FOLB varies the most (Fig. 8) and with
different values of ψ which controls how much heterogeneity
contributes in computing aggregation weight of each local
update in (18). The results show that by taking into account
the inherent heterogeneity, FOLB is more stable than the other
variant. In particular, with heterogeneity, FOLB is able to avoid
most major drops in accuracy and stays at high accuracy level
toward later iterations without any significant fluctuations.
On the other hand, the vanilla FOLB can reach high accuracy
but fluctuates widely even in later iterations. In addition, from
Fig. 11, ψ can take value in a wide range, i.e., [0.1, 10] and
still helps stabilize FOLB well.
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Fig. 11. Accuracy of FOLB with and without heterogeneity consideration. Heterogeneity-aware FOLB avoids major drops of accuracy between iterations
and is more robust than vanilla FOLB.

VII. CONCLUSION

In this work, we have introduced FOLB - a fast-convergent
federated learning algorithm, and shown that FOLB theo-
retically achieves a near-optimal possible lower-bound for
the overall loss decrease at every round of communica-
tion/optimization. FOLB encloses a novel adaptive aggregation
scheme that takes into account both statistical and system
heterogeneity inherent in the modern networking environments
of massively distributed mobile devices. More importantly,
we have shown that across different tasks and datasets, FOLB
significantly reduces the number of rounds to reach a certain
level of loss value and accuracy.

For future work, a promising direction is to study a device
selection methodology that couples decisions across multiple
time periods to bring greater performance gains in the long
term. This involves deriving new lower-bound that reflects the
performance after a number of optimization rounds and taking
into account the communication and computation heterogene-
ity in all those rounds.

APPENDIX

A. Proof of Theorem 1

Proof: From the L-Lipschitz continuity of f , we have

f(wt+1)≤f(wt)+〈∇f(wt),wt+1−wt〉+L

2

∥∥wt+1−wt
∥∥2

(19)

We will separately bound the last two terms on the
right-hand side of the above inequality:
• Bounding

∥∥wt+1 − wt
∥∥: Let ŵt+1

k =
arg minw hk(w,wt). Due to the μ′-strong convexity of

hk(w,wt) and the γ-inexact local solver assumption for
wt+1

k , we have:∥∥ŵt+1
k − wt+1

k

∥∥ ≤ 1
μ′
∥∥∇h(ŵt+1

k ,wt) −∇h(wt+1
k ,wt)

∥∥
≤ γ

μ′
∥∥∇Fk(wt)

∥∥ , (20)

and, similarly,∥∥ŵt+1
k − wt

∥∥ ≤ 1
μ′
∥∥∇Fk(wt)

∥∥ . (21)

Hence, by the triangle inequality and B-dissimilarity of ∇Fk,
we obtain:∥∥wt+1

k − wt
∥∥ ≤ 1 + γ

μ′
∥∥∇Fk(wt)

∥∥ ≤ B(1 + γ)
μ′

∥∥∇f(wt)
∥∥ .

(22)

Now, noting wt+1 = 1
K

∑
k∈St

wt+1
k , we can write

∥∥wt+1 − wt
∥∥2 ≤

( 1
K

∑
k∈St

∥∥wt+1
k − wt

∥∥)2

≤ B2(1 + γ)2

μ′2
∥∥∇f(wt)

∥∥2
, (23)

where the first inequality follows from the Cauchy-Schwarz’s
inequality, and the second follows from applying (22) to each
k in the sum.
• Bounding 〈∇f(wt),wt+1 − wt〉: By definition of the

aggregation step for wt+1, we can write

〈∇f(wt),wt+1−wt〉= 1
K

∑
k∈St

〈∇f(wt),wt+1
k −wt〉. (24)
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For each term in the sum, we can express

wt+1
k − wt = − 1

μ
∇Fk(wt) +

1
μ

(∇Fk(wt) −∇Fk(wt+1
k ))

+
1
μ

(∇Fk(wt+1
k ) + μ(wt+1

k − wt)).

Thus,

〈∇f(wt),wt+1
k − wt〉

= − 1
μ
〈∇f(wt),∇Fk(wt)〉

+
1
μ
〈∇f(wt), ∇Fk(wt) −∇Fk(wt+1

k )〉

+
1
μ
〈∇f(wt), ∇Fk(wt+1

k ) + μ(wt+1
k − wt)〉

≤ − 1
μ
〈∇f(wt),∇Fk(wt)〉

+
1
μ

∥∥∇f(wt)
∥∥ ∥∥∇Fk(wt) −∇Fk(wt+1

k )
∥∥

+
1
μ

∥∥∇f(wt)
∥∥ ∥∥∇Fk(wt+1

k ) + μ(wt+1
k − wt)

∥∥ ,
where the inequality follows again from Cauchy-Schwarz.
Noting that

∥∥∇Fk(wt) −∇Fk(wt+1
k )

∥∥ ≤ L
∥∥wt+1

k − wt
∥∥

by Assumption 1, and that ∇Fk(wt+1
k ) + μ(wt+1

k − wt) =
∇h(wt+1

k ,wt) by definition, we have

〈∇f(wt),wt+1
k − wt〉

≤ − 1
μ
〈∇f(wt),∇Fk(wt)〉

+
LB(1 + γ)

μμ′
∥∥∇f(wt)

∥∥2 +
Bγ

μ

∥∥∇f(wt)
∥∥2
, (25)

where we have applied (22) to the middle term, and Assump-
tions 4&2 to the last term on the right hand side. Combining
this with (24), we have

〈∇f(wt),wt+1 − wt〉
=

1
K

∑
k∈St

〈∇f(wt),wt+1
k − wt〉

≤ − 1
Kμ

∑
k∈St

〈∇f(wt),∇Fk(wt)〉

+
B

μ

(L(γ + 1)
μ′ + γ

)∥∥∇f(wt)
∥∥2
. (26)

Substituting (23) and (26) into (19) and taking the expecta-
tion, we obtain

E[f(wt+1)]

≤ f(wt) − 1
Kμ

E

[ ∑
k∈St

〈∇f(wt),∇Fk(wt)〉
]

+B

(
L(γ + 1)
μμ′ +

γ

μ
+
BL(1 + γ)2

2μ′2

)∥∥∇f(wt)
∥∥2
,

where the first and last terms on the right hand side are not
written in expectation as they do not depend on the selection
of devices in round t. �

B. Proof of Proposition 1

Proof: The key difference from Theorem 1’s proof is in
the decomposition of 〈∇f(wt),wt+1 − wt〉 in (26). In this
case, we write

〈∇f(wt),wt+1 − wt〉
=

1
K

[ ∑
k∈S+

t

〈∇f(wt),wt+1
k − wt〉

+
∑

k∈S−
t

〈∇f(wt),wt − wt+1
k 〉

]
, (27)

where S+
t = {k ∈ St : 〈∇f(wt),∇Fk(wt)〉 ≥ 0} and

S−
t = {k ∈ St : 〈∇f(wt),∇Fk(wt)〉 < 0}. For k ∈ S+

t ,
the derivation follows (25). On the other hand, for k ∈ S−

t ,

〈∇f(wt),wt − wt+1
k 〉

≤ 1
μ
〈∇f(wt),∇Fk(wt)〉

− 1
μ
〈∇f(wt), ∇Fk(wt) −∇Fk(wt+1

k )〉

− 1
μ
〈∇f(wt), ∇Fk(wt+1

k ) + μ(wt+1
k − wt)〉

≤ − 1
μ
|〈∇f(wt),∇Fk(wt)〉|

+
1
μ

∥∥∇f(wt)
∥∥∥∥∇Fk(wt) −∇Fk(wt+1

k )
∥∥

+
1
μ

∥∥∇f(wt)
∥∥∥∥∇Fk(wt+1

k ) + μ(wt+1
k − wt)

∥∥
≤ − 1

μ
|〈∇f(wt),∇Fk(wt)〉|

+
LB(1 + γ)

μμ′
∥∥∇f(wt)

∥∥2 +
Bγ

μ

∥∥∇f(wt)
∥∥2
.

Substituting these expressions in (27) gives the result. �

C. Proof of Lemma 1

We sequentially prove the two statements in the following:
Proof of Eq. (11): We expand

∑
k∈St

1
〈∇Fk(wt),

∇1 f(wt)〉2 as follows:∑
k∈St

1

〈∇Fk(wt),∇1 f(wt)〉2

=
1
K2

∑
k∈St

1

( ∑
k′∈St

1

〈∇Fk(wt),∇Fk′ (wt)〉
)2

=
1
K2

∑
k,k′,k′′∈St

1

〈∇Fk(wt),∇Fk′ (wt)〉〈∇Fk(wt),∇Fk′′ (wt)〉

Since |St
1| = K , the summation in the last equality has

K3 terms. Across all possible multisets St
1, there are N3

possible combinations of k, k′, k′′. Since device selection in
Algorithm 2 occurs uniformly at random, each combination
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k, k′, k′′ has the same probability of appearing in the summa-
tion. Therefore, we can write the expectation as a summation
over all combinations of three devices from [N ] = {1, . . . , N},
and simplify the result as follows:

E

[ ∑
k∈St

1

〈∇Fk(wt),∇1 f(wt)〉2
]

=
K3

K2 N3

∑
k,k′,k′′

〈∇Fk(wt),∇Fk′ (wt)〉〈∇Fk(wt),∇Fk′′ (wt)〉

=
K

N3

∑
k∈[N ]

( ∑
k′∈[N ]

〈∇Fk(wt),∇Fk′ (wt)〉
)2

=
K

N

∑
k∈[N ]

(
〈∇Fk(wt),

1
N

∑
k′∈[N ]

∇Fk′ (wt)〉
)2

=
K

N

∑
k∈[N ]

(
〈∇Fk(wt),∇f(wt)〉

)2

,

where the last step follows from the definition of ∇f(wt) =
1
N

∑
k∈[N ] ∇Fk(wt). �

Proof of Eq. (12): By definition of ∇2 f(wt), we have∑
k′∈St

2

〈∇Fk′ (wt),∇2 f(wt)〉

=
1
K

∑
k′,k′′∈St

2

〈∇Fk′ (wt),∇Fk′′ (wt)〉.

Then, similar to the proof of Eq. (11), we can write the
expectation as a summation over all possible combinations of
device pairs, and simplify:

E

[ ∑
k′∈St

2

〈∇Fk′ (wt),∇2 f(wt)〉
]

=
K2

KN2

∑
k′,k′′∈[N ]

〈∇Fk′ (wt),∇Fk′′ (wt)〉

=
K

N

∑
k′∈[N ]

〈∇Fk′ (wt),
1
N

∑
k′′∈[N ]

∇Fk′′ (wt)〉

=
K

N

∑
k′∈[N ]

〈∇Fk′ (wt), f(wt)〉

≤ K

N

∑
k′∈[N ]

|〈∇Fk′ (wt), f(wt)〉|.

That complete the proof. �

D. Proof of Theorem 2

Proof: As in Theorem 1, we begin with the L-Lipschitz
inequality for f(wt+1) given in (19), and bound the last two
terms on the right-hand side:
• Bounding

∥∥wt+1 − wt
∥∥: In (9), define

P̂ t
k =

〈∇Fk(wt),∇1 f(wt)〉∑
k′∈St

2
〈∇Fk′ (wt),∇2 f(wt)〉 , (28)

i.e., an approximation of the LB-near-optimal selection prob-
ability in (7). Following the procedure for this bound in
Theorem 1, for the update rule (9) of FOLB, we can write∥∥wt+1 − wt

∥∥2 ≤
( ∑

k∈St
1

P̂ t
k

∥∥wt+1
k − wt

∥∥)2

≤
(∑

k∈St
1

P̂ t
k

)2B2(1 + γ)2

μ′2
∥∥∇f(wt)

∥∥2
. (29)

• Bounding 〈∇f(wt),wt+1−wt〉: Similar to the procedure
for this bound in Theorem 1, we can write

〈∇f(wt),wt+1 − wt〉
=
∑
k∈St

1

P̂ t
k〈∇f(wt),wt+1

k − wt〉

≤ − 1
μ

∑
k∈St

1

P̂ t
k〈∇Fk(wt),∇1 f(wt)〉

+
∑
k∈St

1

P̂ t
k

B

μ

(L(γ + 1)
μ′ + γ

)∥∥∇f(wt)
∥∥2
, (30)

where the equality follows from the FOLB aggregation, and
the inequality follows from (25).

Now, substituting (29) and (30) into (19), we have

f(wt+1) ≤ f(wt) − 1
μ

∑
k∈St

1

P̂ t
k〈∇Fk(wt),∇1 f(wt)〉

+
∑
k∈St

1

P̂ t
k

B

μ

(L(γ + 1)
μ′ + γ

)∥∥∇f(wt)
∥∥2

+
( ∑

k∈St
1

P̂ t
k

)2B2(1 + γ)2

μ′2
∥∥∇f(wt)

∥∥2
.

Note that, with random selection of St
1 and St

2, we can
define two random variables

∑
k∈St

1
〈∇Fk(wt),∇1 f(wt)〉

and
∑

k′∈St
2
〈∇Fk′ (wt),∇2 f(wt)〉 which follow the

same distribution and E
[∑

k∈St
1
〈∇Fk(wt),∇1 f(wt)〉] =

E
[∑

k′∈St
2
〈∇Fk′ (wt),∇2 f(wt)〉]. Taking expectation with

respect to the uniformly random selection of devices in the
two sets St

1 and St
2, and using Taylor’s expansion give us

E[f(wt+1)] ≤ f(wt) − 1
μ
E
[ ∑

k∈St
1

P̂ t
k〈∇Fk(wt),∇1 f(wt)〉

]

+B
(L(γ + 1)

μμ′ +
γ

μ
+
BL(1 + γ)2

2μ′2
) ∥∥∇f(wt)

∥∥2
.

Since St
1 and St

2 are independent sets of random devices,
the above inequality is equivalent to

E[f(wt+1)] ≤f(wt)

− 1
μ

E

[∑
k∈St

1
〈∇Fk(wt),∇1 f(wt)〉〈∇Fk(wt),∇1 f(wt)〉

]
E

[∑
k′∈St

2
〈∇Fk′ (wt),∇2 f(wt)〉

]
+B

(L(γ + 1)
μμ′ +

γ

μ
+
BL(1 + γ)2

2μ′2

) ∥∥∇f(wt)
∥∥2
. (31)

In the term with expectations, we can apply
Eq. (11) and (12) from Lemma 1 to the numerator and
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denominator, respectively, giving

E[f(wt+1)]

≤ f(wt) − 1
μ

∑
k∈[N ]〈∇f(wt),∇Fk(wt)〉2∑

k′∈[N ] |〈∇f(wt),∇Fk′ (wt)〉|

+B
(L(γ + 1)

μμ′ +
γ

μ
+
BL(1 + γ)2

2μ′2
)∥∥∇f(wt)

∥∥2
, (32)

which is equivalent to (8). �

E. Proof of Theorem 3

Proof: From the L-Lipschitz continuity of f , we have

f(wt+1) ≤ f(wt) + 〈∇f(wt),wt+1 − wt〉
+
L

2

∥∥wt+1 − wt
∥∥2
. (33)

We will bound the last two terms in the right-hand side of the
above inequality as follows:
• Bound

∥∥wt+1 − wt
∥∥: Similar to the proof of Theorem 1,

we derive the following bound:∥∥wt+1 − wt
∥∥2 ≤

( 1
K

∑
k∈St

∥∥wt+1
k − wt

∥∥)2

≤ B2

K2μ′2
( ∑

k∈St

(1 + γk)
)2 ∥∥∇f(wt)

∥∥2
. (34)

• Bound 〈∇f(wt),wt+1−wt〉: Following the similar steps
in the proof of Theorem 1, we obtain the following:

〈∇f(wt),wt+1
k − wt〉 ≤ − 1

μ
〈∇f(wt),∇Fk(wt)〉

+
1
μ
〈∇f(wt), (∇Fk(wt) −∇Fk(wt+1

k ))〉

+
1
μ
〈∇f(wt), (∇Fk(wt+1

k ) + μ(wt+1
k − wt))〉

≤ − 1
μ
〈∇f(wt),∇Fk(wt)〉

+
1
μ

∥∥∇f(wt)
∥∥∥∥∇Fk(wt) −∇Fk(wt+1

k )
∥∥

+
1
μ

∥∥∇f(wt)
∥∥∥∥(∇Fk(wt+1

k ) + μ(wt+1
k − wt))

∥∥
≤ − 1

μ
〈∇f(wt),∇Fk(wt)〉 +

LB(1 + γk)
μμ′

∥∥∇f(wt)
∥∥2

+
Bγk

μ

∥∥∇f(wt)
∥∥2
,

≤ − 1
μ
〈∇f(wt),∇Fk(wt)〉 +

LB

μμ′
∥∥∇f(wt)

∥∥2

+
B

μ

(
L

μ′ + 1
)
γk

∥∥∇f(wt)
∥∥2
, (35)

and, consequently,

〈∇f(wt),wt+1 − wt〉
=

1
K

∑
k∈St

〈∇f(wt),wt+1
k − wt〉

≤ − 1
Kμ

∑
k∈St

〈∇f(wt),∇Fk(wt)〉

+
B

μ

∑
k∈St

(
L

μ′ + 1
)
γk

∥∥∇f(wt)
∥∥2 +

LB

μμ′
∥∥∇f(wt)

∥∥2
.

(36)

Combine (33), (34) and (36), we obtain:

f(wt+1) ≤ f(wt) − 1
Kμ

∑
k∈St

〈∇f(wt),∇Fk(wt)〉

+B
∑
k∈St

1

(
L

μμ′ +
1
μ

+
LB

Kμ′2

)
γk

∥∥∇f(wt)
∥∥2

+
LB2

2 K2μ′2

(∑
k∈St

γk

)2 ∥∥∇f(wt)
∥∥2

+
(
LB2

2μ′2 +
LB

μμ′

)∥∥∇f(wt)
∥∥2
. (37)

Thus,

E[f(wt+1)] ≤ f(wt) − 1
Kμ

E

[ ∑
k∈St

(
〈∇f(wt),∇Fk(wt)〉

−B

(
L

μμ′ +
1
μ

+
LB

Kμ′2

)
γk

∥∥∇f(wt)
∥∥2

− LB2

2 K2μ′2
∑

k′∈St

γk′γk

∥∥∇f(wt)
∥∥2

)]

+
(
LB2

2μ′2 +
LB

μμ′

)∥∥∇f(wt)
∥∥2

≤ − 1
Kμ

E

[ ∑
k∈St

(
〈∇f(wt),∇Fk(wt)〉

−B

(
L

μμ′ +
1
μ

+
3 LB

2 Kμ′2

)
γk

∥∥∇f(wt)
∥∥2

)]

+
(
LB2

2μ′2 +
LB

μμ′

)∥∥∇f(wt)
∥∥2
. (38)

This completes the proof. �
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