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Abstract—We study student performance prediction in Mas-
sive Open Online Courses (MOOCs), where the objective is
to predict whether a user will be Correct on First Attempt
(CFA) in answering a question. In doing so, we develop novel
techniques that leverage behavioral data collected by MOOC
platforms. Using video-watching clickstream data from one of
our MOOCs, we first extract summary quantities (e.g., fraction
played, number of pauses) for each user-video pair, and show
how certain intervals/sets of values for these behaviors quantify
that a pair is more likely to be CFA or not for the corresponding
question. Motivated by these findings, our methods are designed
to determine suitable intervals from training data and to use the
corresponding success estimates as learning features in prediction
algorithms. Tested against a large set of empirical data, we find
that our schemes outperform standard algorithms (i.e., without
behavioral data) for all datasets and metrics tested. Moreover,
the improvement is particularly pronounced when considering
the first few course weeks, demonstrating the “early detection”
capability of such clickstream data. We also discuss how CFA
prediction can be used to depict graphs of the Social Learning
Network (SLN) of students, which can help instructors manage
courses more effectively.

I. INTRODUCTION

In the past few years, Massive Open Online Courses
(MOOCs) have drastically risen in popularity, creating global
connectivity among student bodies of unprecedented size
and diversity. Platforms such as Coursera, edX, and Udacity
have offered courses with enrollments reaching hundreds of
thousands, and have become subjects of intensive debate [1].

Policy and business issues aside, with MOOC teacher-to-
student ratios at fractions of one percent [2], there is one
technology advance that will be critical to the efficacy of
learning at this scale: automated mechanisms to assist an
instructor in enhancing the learning experience [3]. To this
end, our recent work [4] pointed out a number of research
avenues pertaining to the Social Learning Network (SLN)
of MOOC, which is a type of social network between stu-
dents, instructors, and modules of learning. These include
recommendation, personalization, and prediction such as of
performance or participation dropoff rates. They arise in part
due to the various learning modes available to students on
these platforms: video lectures, assessments, and discussion
forums. Data about student behavior with each of these modes
can be analyzed to help investigate the research areas.

We investigate two research questions for MOOC:
• Q1: Is it possible to correlate student performance on

assessments with their video-watching behavior?

• Q2: Can we use student behavior to predict their perfor-
mance better than without it?

To investigate these questions, we will use data from one of
our own MOOC offerings on Coursera [5]. We focus on user
(student) video-watching behavior and in-video quiz perfor-
mance, which were the most abundant types of data collected,
consisting of over 1.3M clickstream logs of user interaction
with the video player and over 40K quiz submissions.
Organization. In Sec. II and III, we will focus on Q1 through
statistical analysis of the video-watching and performance
data. In doing so, we will identify how certain watching char-
acteristics are indicative of whether a user is more likely to be
Correct on First Attempt (CFA) or not at answering a question.
Then, in Sec. IV, we will turn to Q2 and design a scheme
that estimates CFA probabilities from these characteristics and
uses them as learning features for prediction. For comparison,
we also present some standard algorithms that have been
employed for CFA prediction using only performance data.
Finally, in Sec. V, we evaluate these methods, where we will
see that our scheme consistently outperforms the standard
ones in different scenarios, and that the incremental gain
is particularly high early in the course when there is little
information about each user. We will also highlight how our
findings can be useful in defining SLN graphs that can assist
a course instructor in clustering similar students together,
in recommending study partners, and in early detection of
students who may benefit from remedial help.
Related work. Various works have studied performance pre-
diction in traditional education settings. There is a long line of
work on Item Response Theory (IRT), which seeks to prob-
abilistically estimate the response that a particular examinee
will provide to a particular item [6]. More recently, research
has focused on developing predictors for whether a user will
be CFA or not on a question. Collaborative filtering (CoF)
algorithms have been applied as classification models in this
setting; memory-based CoF, such as neighborhood methods,
have been used [7], but model-based CoF, such as latent
semantic analysis and matrix factorization, are perhaps the
most widespread (e.g., [8]–[10]). One reason for the popularity
of CoF techniques in this context is its inspiration from the
Netflix Prize competition [7], where CoF methods were seen to
perform quite well. For Netflix Prize, the dataset consisted of
users, movies, ratings between 1 and 5 for some (about 1%) of
the user-movie pairs, and timestamps on the rating submissions
[11]. For CFA prediction, there are also unknown entries but in



practice many less since assignments are typically compulsory,
and the target is binary rather than discrete.

Beyond CoF, other works for performance prediction have
applied probabilistic graphical models (PGMs) such as Hidden
Markov Models (HMMs) and Bayesian networks [12], [13],
decision tree classifiers [14], and factorization machines (FM)
[15], typically when there is additional, coarse-granular infor-
mation collected (e.g., course difficulty, time spent answering
questions, age range) about users and/or courses over multiple
sessions. In answering Q1 and Q2, we focus instead on relating
a type of behavioral data – video-watching behavior – to
performance, for users within a single course.

There has been a lack of work studying performance pre-
diction for MOOC. The problem can be more difficult in
this setting because though there are many more users than
in a classroom, the fraction of assessments a user completes
can be much less due to participation dropoff over time
[2]. Beyond performance prediction, some recent studies on
MOOC have analyzed behavioral data. For example, in terms
of discussion forums, in another work [2] we analyzed the
decline of participation in 73 MOOC courses over time. As
for video-watching data, [16] looked at which characteristics
of lecture videos contribute to peaks in watching behavior and
dropoff rates.
Contribution. We discover video-watching behavioral quan-
tities that are correlated with student performance, and show
that they can be used to enhance CFA prediction. Additionally,
we identify the “early detection” capability of clickstream data,
showing that the incremental improvement is higher in the first
few course weeks. Moreover, this work is the first to study
CFA prediction in the context of MOOC. Each of these are
important steps in studying the SLN of MOOC users.

II. COURSE DESCRIPTION AND BASIC STATISTICS

A. Course Format
We have instructed two MOOCs on Coursera over multiple

offerings. The first offering of Networks: Friends, Money, and
Bytes (N:FMB) [5] in fall 2012 is well-suited for exploration
of our research questions because of its structure, as follows.

There were a total of 20 lectures, roughly two per week over
12 weeks. Each lecture was composed of a number of videos;
the majority (12/20) had 5, while most others (7) had 4 and
one had 6, for a total of 93 videos. Over these 93, the average
length was 16.89 min (standard deviation (SD) = 5.96). To
supplement the videos, we created in-video quizzes to test
student understanding with the material, each in machine-
graded, radio-button response format with four choices each.
In doing so, we asked exactly one question at the end of each
video, in such a way that each question was testing material
limited to, and encapsulating the majority of, the video. As a
result, we effectively had a 1:1 correspondence between videos
and quizzes.1 But though this 1:1 relationship is convenient,

1Besides in-video quizzes, there were other forms of assessment for our
course: exams and homeworks. We do not focus on those here, because the
in-video quizzes received a much larger number of submissions than these
other assessments, since no certificate was allowed online by our institution.
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Fig. 1: ECDFs of submission count (a) over videos, where counting
only serious users makes the distribution more uniform, and (b) over
users, where counting only the first part of the course does the same.

it is not required, as we will discuss in Sec. V-C.

B. Quiz and Clickstream Data
1) Quiz submissions: An export of the quiz responses,

including the user ID, quiz ID, time of submission, and answer
selected, was obtained from Coursera. From this, we were able
to determine all of the (first-attempt) user-quiz submission
pairs for the course. There were 40,464 such pairs, from a
total of 5,205 users and 92 quizzes (an error prevented one
quiz from user display). This means that less than 12% of the
entries were known, underscoring the sparsity of the data.
Basic statistics. We first present some statistics on how the
submission counts and CFA scores vary across videos and
users. This will be useful when we consider different subsets
of the data for analysis and evaluation. To this end, we consider
a video to be in the “beginning” of our course if it is within the
first 20, or roughly the first two weeks of the 12-week course.
Further, we consider a user to be “active” if she answered at
least 20 questions, or two weeks worth of the quizzes.2
Submission counts: In Fig. 1(a), we show the empirical CDF
(ECDF) of the number of submissions made for each video.
The first trace includes all users. The earlier videos had
more submissions; the first 11 accounted for 50%, showing
the drop-off in participation over time. The mean number
of submissions per video is 440, with a high SD (608).
The second trace only includes submissions from the 794
active users who took at least 20 quizzes, where there is less
variation; the mean is 266 with a lower SD (210).

Fig. 1(b) shows the ECDF of submissions over users.
Considering all videos, 50% of the submissions were made
by the most active 497 users; in fact, only 18 submitted all
questions, while 2246 submitted only one or two. The mean
questions submitted was 7.8, with a high SD (13.3). The mean
over the first 20 videos is 5.08 per user with a lower SD (5.60).
Average CFA scores: The mean score over all 40K pairs is
0.658 with an SD of 0.474. Fig. 2(a) shows the average score
over users, which is the mean of the CFA scores (0 or 1) over
all quizzes a user submitted. The top shows all users; the mean
is 0.646, with a high SD (0.342). The large variance is due
in part to the fact that many users submit few quizzes. To see

2The choice of 20 questions is somewhat arbitrary, serving to show that
there are qualitative differences between different subsets of the data here and
in Sec. V. Varying it was not seen to affect our conclusions.
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Fig. 2: Boxplots of average CFA scores (a) over users, where counting
only serious users reduces the variance, and (b) over videos, where
the average for those in the first two weeks is higher.

this, at the bottom we plot the average score across users with
at least 20 quizzes, and the SD drops substantially (0.181),
with the mean only lowering slightly (0.624).

In Fig. 2(b), we plot the average score over quizzes. The
top shows all 92 videos; the mean is 0.615 (SD = 0.173). The
bottom considers only the beginning 20 videos, for which the
distribution has a higher mean of 0.657 (SD = 0.141).

2) Clickstream logs: We also obtained an export of the
video-watching clickstream data collected by Coursera, which
log user interaction with the video player. Each time an event
– play, pause, rate change, or seek – is fired, a data entry
is recorded that specifies the user and video IDs, event type,
playback position, playback speed, and UNIX time.

In total, there were 1,322,243 clickstream logs, with 122,533
user-video pairs. But we removed all pairs which did not
have both a quiz submission and at least one clickstream log
recorded, bringing the total to 38,703. Then, we removed 9,134
pairs that had at least one null entry. From the remainder,
we discounted all 3,346 entries that were either stall or error
events. In the end, we were left with 26,223 pairs.
Video-watching quantities. For each of these pairs, we com-
puted 9 summary quantities (behaviors) of interest:
1. Fraction spent (fracSpent): The fraction of (real) time the
user spent playing the video, relative to its length.
2. Fraction completed (fracComp): The percentage of the
video that the user played, not counting repeated play position
intervals; hence, it must be between 0 and 1.
3. Fraction played (fracPlayed): The amount of the video that
the user played, with repetition, relative to its length.
4. Number of pauses (numPaused): The number of times the
user paused the video.
5. Fraction paused (fracPaused): The fraction of time the user
spent paused on the video, relative to its length.
6. Average playback rate (avgPBR): The time-average of the
playback rates selected by the user. The player on Coursera
allows rates between 0.75x and 2.0x the default speed.
7. Standard deviation of playback rate (stdPBR): The standard
deviation of the playback rates selected over time.
8. Number of rewinds (numRWs): The number of times the
user jumped backward in the video.

9. Number of fast forwards (numFFs): The number of times
the user jumped forward in the video.

We will now study how these quantities vary between CFA
and non-CFA instances. Then, we will use those findings to
motivate the design of CFA prediction scheme (Sec. IV-C).
Note that these quantities are not independent of each other,
but each will tell us something different about user behavior.

III. CLICKSTREAM DATA ANALYSIS

For each quantity, we perform two groups of analysis. First,
we examine where the probability density lies, and determine
whether there is an overall difference in the distributions
for the CFA and non-CFA classes. Since Shapiro-Wilk tests
detected significant departures from normality for the distri-
butions, we ran the non-parametric Wilcoxon Rank Sum test
[17] for the null hypothesis that there is no difference between
the classes overall. We will report the p-value (pW ) from this
test, and when it is low enough (below 0.05), we can reject
the null hypothesis and assume the difference is significant.

Second, we consider whether there are certain intervals or
sets of values that indicate a higher likelihood of being in
one of the classes. We identified the potential intervals by
visually analyzing the probability density of the two classes;
for continuous quantities 1-3 and 5 shown in Fig. 3, we used
Gaussian Kernel Density Estimation (formalized in Sec. IV-C)
[18] with a bandwidth parameter ⌘ stated in each case. For
each of the intervals, we run a two-sample test for proportions
[17] for the null hypothesis that there is no difference between
the fraction of CFA and non-CFA samples occurring there,
relative to the totals for each class. If the p-value from this
test is low, then there is a large enough difference between
the fractions and a large enough sample size in the interval to
assume that the CFA probability estimate p̂ is significant.3 For
these cases, we report the p-value, p̂, and a 95% Confidence
Interval (CI) around p̂, all of which are tabulated in Fig. 4.

For this analysis, we consider all videos, but only the active
users who answered at least 20 questions, for which there are
roughly 9.2K CFA and 4.7K and non-CFA samples.

A. Statistical Analysis
Playing behavior. This corresponds to Quantities 1 to 3.
fracSpent: Much of the density is in [0.9, 1.1] (40% of CFA,
42% of non-CFA). The mean for CFA is 0.82 (SD = 0.36),
compared to 0.78 (SD = 0.39) for non-CFA. This indicates
that, as expected, a user submitting a correct answer tends to
have spent more time with the video. The difference between
the distributions is significant (pW = 4.7e-8). As shown in
Fig. 3(a), we identified three intervals of interest: [0, 0.54] for
which there is more non-CFA density, and [0.54, 0.90] and
[1.1, 2.0] with more CFA, giving p̂ of 0.45, 0.52, and 0.51.
fracComp: Here, much density lies in [0.95, 1] (57% of both
classes). The mean for CFA is 0.76 (SD = 0.35), as opposed
to 0.74 (SD = 0.37) for non-CFA. The difference between the

3In other words, a significant p-value tells us we can trust p̂. Then, if p̂ is
above 0.5, p̂� 0.5 tells us how much more likely CFA is in that interval; if
below 0.5, then 0.5� p̂ tells us how much more likely non-CFA is.
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Fig. 3: Depiction of intervals of significance for continuous click-
stream quantities, considering all videos and all users taking at least
20 quizzes. We can visually identify the difference between the CFA
and non-CFA classes, particularly in (b) and (d).

distributions not significant (pW = 0.443). Still, we identified
two intervals of significance (Fig. 3(b)): [0, 0.13], where there
is more non-CFA density, and [0.76, 0.95], with more CFA,
giving p̂ of 0.47 and 0.53.
fracPlayed: For this, much of the density is in [0.9, 1.1] (64%
of CFA, 62% of non-CFA). The mean for CFA is 0.91 (SD =
0.36), as opposed to 0.85 (SD = 0.39) for non-CFA. Similar
to fraction spent, this indicates that a student submitting CFA
tends to watch more of the video, and the difference between
the distributions is significant (pW = 4.2e-24). We found two
intervals (Fig. 3(c)): [0, 0.8], with more non-CFA density, and
[1.05, 1.65] with more CFA, giving p̂ of 0.44 and 0.55.
Pausing Behavior. This corresponds to Quantities 4 and 5.
numPauses: Much of the density is in {0, 1} (60% of CFA,
67% of non-CFA). The mean for CFA is 1.77 (SD = 2.05),
as opposed to 1.48 (SD = 1.84) for non-CFA. This indicates
that students who get questions correct tend to pause more
(i.e., to reflect on the material), and the overall difference is
significant (pW = 2.7e-16). We identified two sets of interest:
{0, 1}, with more non-CFA density, and {2, ..., 10} with more
CFA, giving p̂ of 0.42 and 0.57.
fracPaused: Here, much density lies in [0, 0.01] (32% of CFA,
35% of non-CFA). The mean of each class is roughly 0.13
(SD = 0.20), and there is no significant difference between
the distributions (pW = 0.253). Even so, we identify three
intervals (Fig. 3(d)): [0.01, 0.082] and [0.28, 0.356], where
there is more non-CFA density, and [0.082, 0.25], where there
is more CFA, giving p̂ of 0.54, 0.51, and 0.46.
Playback rate behavior. This is for Quantities 6 and 7.
avgPBR: Much density is at 1 (63% for non-CFA, 60% for
CFA), indicating that many keep the default rate. The mean
for both classes is roughly the same at 1.17 (SD = 0.28), but

the difference between them is significant (pW = 0.018). We
identified two sets: 1, with more non-CFA density, and R�0\1,
with more CFA, giving p̂ of 0.48 and 0.53.
stdPBR: For this quantity, much of the density is at 0 (79%
for non-CFA, 75% for CFA), meaning that many hold the
playback rate constant. The mean for non-CFA is 0.011 (SD
= 0.043), while that for CFA is 0.015 (SD = 0.049). The
difference between the distributions is significant (pW = 1.3e-
7), indicating that CFA tends to change the playback rate more.
We identified two sets: 0, with more non-CFA density, and
R>0, with more CFA density, giving p̂ of 0.46 and 0.53.
Jumping behavior. Finally, this is for Quantities 8 and 9.
numRWs: Here, much density is at 0 (78% for non-CFA,
73% for CFA). The mean for non-CFA is 0.46 (SD = 1.04),
compared to 0.61 (SD = 1.21) for CFA. There is a significant
difference between the distributions (pW = 3.5e-10), indicat-
ing that CFA tends to rewind more (i.e., revisit material). We
consider two sets: 0 and {1, ..., 5}, with a higher concentration
of non-CFA and CFA, respectively, giving p̂ of 0.43 and 0.53.
numFFs: The density is largest at 0 (79% for both classes), and
the means for both classes are roughly 0.42 (SD = 0.99). There
is no significant difference between the classes (pW = 0.768),
and we found no sets of interest.

B. Key Messages
We conclude from our dataset that satisfying at least one of

the following characteristics is an indication that a user has a
higher chance of CFA than not on a quiz:
Playing behavior: Playing more of the video than its length,
spending more time on a video than its length, or completing
more than 3/4ths of a video (but not its entirety).
Pausing behavior: Pausing more than once, or pausing either
for a very short or very long time relative to the video length.
Playback rate behavior: Having an average playback rate
different from the default speed, or varying the playback rate.
Jumping behavior: Rewinding at least once.

These give an instructor indication as to which character-
istics serve as signals for success. Turning such indication to
prediction is our next step.

IV. PREDICTION ALGORITHMS

Now that we have investigated Q1, we move to Q2, which
seeks to use our findings to enhance performance prediction
for MOOC. Our approach will be formalized in Sec. IV-C.
We begin here by describing a number of standard algorithms
(Sec. IV-B) that have been applied for prediction in traditional
education settings and leverage only performance data, as well
as standard metrics (Sec. IV-A) that will be used for evaluation.
Definitions. In general, let n 2 ⌦ denote entry/instance n in
the set of all entries ⌦ that form the full dataset. We index
users (students) by i and quizzes (videos) by j; each entry
is associated with a particular user u(n), quiz q(n), CFA
score yn 2 {0, 1} (1 is CFA, 0 is non-CFA), and algorithm
prediction ŷn 2 [0, 1]. We also write n = e(i, j) to denote the
entry n associated with user i and quiz j, where e : (i, j) ! ⌦.
For evaluation, we generate training and test sets as subsets of



Feat Int/Set p̂ 95% CI p-value

fracSpent
[0, 0.54] 0.452 (0.438, 0.466) 5.27e-12

[0.54, 0.90] 0.519 (0.504, 0.534) 0.017
[1.1, 2.0] 0.511 (0.500, 0.521) 0.049

fracComp [0, 0.13] 0.471 (0.459, 0.483) 1.63e-6
[0.76, 0.95] 0.527 (0.517, 0.537) 3.59e-7

fracPlayed [0, 0.80] 0.437 (0.422, 0.451) 2.2e-16
[1.05, 1.65] 0.554 (0.541, 0.567) 6.9e-15

numPaused {0, 1} 0.420 (0.403, 0.437) 2.2e-16
{2, ..., 10} 0.567 (0.550, 0.584) 1.35e-14

Feat Int/Set p̂ 95% CI p-value

fracPaused
[0.01, 0.082] 0.540 (0.527, 0.553) 3.97e-9
[0.082, 0.25] 0.464 (0.450, 0.477) 6.06e-8
[0.28, 0.356] 0.507 (0.501, 0.513) 0.022

avgPBR {1} 0.481 (0.463, 0.498) 0.032
R�0 \ {1} 0.529 (0.512, 0.546) 8.2e-4

stdPBR {0} 0.463 (0.448, 0.477) 1.11e-6
R�0 \ {0} 0.530 (0.523, 0.552) 1.11e-6

numRW {0} 0.429 (0.413, 0.446) < 2.2e-16
{1, ..., 5} 0.533 (0.519, 0.548) 1.07e-5

Fig. 4: Identified intervals/sets with difference between CFA and non-CFA classes. The estimated p̂, 95% CI, and p-value are given for each.

⌦ through a procedure described in Sec. V-A; the training set
⌦T and test set ⌦E are always chosen such that ⌦T \⌦E = ;.

A. Metrics
Accuracy: Let ỹn 2 {0, 1} denote the rounded output of the
prediction ŷn for entry n. The accuracy is the fraction of these
in the test set that are correct:

1

|⌦E |
X

n2⌦E

ỹn=yn ,

where is the indicator function.
RMSE: Unlike accuracy, the Root Mean Squared Error
(RMSE) uses ŷn directly, and is evaluated as follows:

s
1

|⌦E |
X

n2⌦E

(yn � ŷn)
2
.

AUC: This measures the Area Under the Receiver Operating
Characteristic (AUROC) curve of the classifier, where the ROC
plots the tradeoff between the true and false positive rates [18].
AUC can also be seen as the probability that the classifier will
rank a randomly chosen instance in the positive class (i.e.,
yn = 1) higher than a randomly chosen negative instance.

Even one percent improvement in some of these metrics
can be substantial. As a reference, for CFA prediction in KDD
Cup 2010 there was only 1% improvement in RMSE from the
132nd to the best score on the leaderboard.4

B. Standard Algorithms in Big Data
Naive: This predicts the global average over ⌦T for all n:

ŷn =
1

|⌦T |
X

n02⌦T

yn0 .

This most naive predictor will only serve as a benchmark for
measuring incremental improvement for all other algorithms.
Biases: This includes a bias for each user and quiz, and is
equivalent to the Rasch model in IRT [9] with a global bias
term. Letting bu(n) and bq(n) be the biases for u(n) and q(n),
b be the vector of biases, and µ be a global term, we solve

argmin
µ,b

X

n2⌦T

� ln� (ŷ0n · y0n) +
�B

2
||b||2,

where ŷ0n = 2(ŷn � 0.5), y0n = 2(yn � 0.5), ŷn = µ +
bu(n) + bq(n), �B is the regularization parameter, and �(·)

4
https://pslcdatashop.web.cmu.edu/KDDCup/LeaderBoard

is the sigmoid function �(z) = 1/(1 + e�z). Here, �B must
be tuned through cross validation (described in Sec. V).
Matrix Factorization (MF): This includes a latent factor
vector of dimension KM for each user, ui 2 RKM , and quiz,
qj 2 RKM , in addition to the biases from the previous case. It
is a common CoF method that modifies conventional Singular
Value Decomposition (SVD) to learn only over known training
instances [9]–[11]. Letting U = [ui] and Q = [qj ] be the
matrix of user and quiz factors, respectively, we solve

argmin
µ,b,U,Q

X

n2⌦T

� ln� (ŷ0n · y0n)+
�B ||b||2 + �M (||U||2 + ||Q||2)

2
,

where ŷ0n and y0n are defined as in Biases, and ŷn = µ +
bu(n) + bq(n) + u

T
u(n)qq(n). �B , �M , and KM must be tuned.

K Nearest Neighbor (KNN): For user i, this uses the CFA
scores of the set of KN users Ui who have the most similar
quiz results to i for prediction. We determine Ui for all i
as in [7]: (i) compute the Pearson correlation coefficient ⇢i,i0
between i and all other users i0 using the performances on
the set of quizzes Ji,i0 common to the pair in ⌦T , (ii) shrink
the correlations according to ⇢̄i,i0 =

|Ji,i0 |⇢i,i0

|Ji,i0 |+↵ , (iii) apply the
sigmoid mapping ⇢̃i,i0 = � (�⇢̄i,i0 + �), and (iv) define Ui as
the set of KN users i0 6= i with maximum |⇢̃i,i0 |. Then,

ŷn =

P
i02U 0

u(n)
⇢̃u(n),i0 · ye(i0,q(n)) +mu(n)�

P
i02U 0

u(n)
|⇢̃u(n),i0 |+ �

,

where U 0
u(n) is the set of only those users i0 2 Uu(n) with

e(i0, q(n)) 2 ⌦T , and mi is the mean score of user i over ⌦T .
Here, ↵, �, �, �, and KN are parameters to be tuned.

C. Our Algorithms Using Clickstream Data

We now present our methods for enhancing performance
prediction with video-watching data. Motivated by the findings
in Sec. IV, they determine suitable intervals/sets of values (re-
ferred to generally as intervals) for each feature by analyzing
the densities over ⌦T , estimate the CFA probabilities within
each interval, and use them as learning features. In Sec. V, this
will be seen to improve performance relative to the standard
algorithms for all metrics and dataset partitions tested.
Interval extraction. Let ⌦C

T be the subset of ⌦T belonging
to class C 2 {0, 1}, i.e., ⌦C

T = {n 2 ⌦T : yn = C}. Also, let
f 2 V denote clickstream quantity f in the set of behaviors
V = {1, ..., 8}, indexed as in Sec. II (we do not use 9 because



it was not significant). In determining suitable intervals over
⌦T , we group each quantity into one of three types:
Continuous (1 – 3, 5): For each continuous f , we approximate
the probability density function of each class C over ⌦C

T with
a Kernel Density Estimator (KDE):

pCf (v) =
1

|⌦C
T |⌘

X

n2⌦C
T



✓
v � vfn

⌘

◆
,

where vfn is the value that quantity f takes for entry n, ⌘ is
the bandwidth of the estimator, and (·) is the kernel function
[18]. Here, we use the standard Gaussian Kernel, and fit the
estimator for values v 2 [0, uf ] (the upper bound controls for
outliers). Then, we find the intersection points between p0f (v)
and p1f (v) as the boundaries between the intervals for f . More
formally, define the ordered set If = {0} [ {v : p0f (v) =
p1f (v)}[{uf}; then, there are |If |�1 intervals, where interval
h 2 {1, ..., |If |�1} spans the range Bf

h = [If (h), If (h+1)].
Discrete (4 & 8): For discrete f , we compute the empirical
probability mass function of each C, pCf (v), over ⌦C

T for
values v 2 {0, ..., uf}. Then, we find the values v at which
a change occurs in the class that has more density between
v and v + 1. More formally, we let If = {0} [ {v :
p0f (v) 7 p1f (v) ^ p0f (v + 1) ? p1f (v + 1)} [ {uf}.5
The interval boundaries are defined by these changes, i.e.,
Bf
h = {If (h), ..., If (h+ 1)� 1}.

Binary (6 & 7): Though these two features take on continuous
values, we saw in Sec. IV that it is more informative to group
each of them into two sets: Bf

0 = {Gf} and Bf
1 = R�0 \ Bf

0 ,
where G6 = 1 and G7 = 0.
Success estimates. We now compute the CFA estimates for
each Bf

h . First, the total occurrences of C in h over ⌦T is

OC
f [h] =

X

n2⌦T

yn=C · vf
n2Bf

h
,

and the corresponding fraction is dCf [h] = OC
f [h]/|⌦C

T |. Then,
letting Of [h] = O0

f [h] + O1
f [h], we apply Laplace’s rule of

succession [18] to compute the estimated probability of a new
element n (i.e., those in ⌦E) with vfn 2 Bh having yn = C:

p̂f [h] =
rf [h] ·Of [h] + 1

Of [h] + 2
,

where rf [h] = d1f [h]/(d
0
f [h]+d1f [h]) is the fraction of density

in h that is of the positive class.6 For the examples with vfn 62
[0, uf ], we set p̂f [h] = 0.5 (i.e., the population average).

Finally, to account for the fact that there can be high
variation in the number of samples for each interval, we apply
Bayesian adjustment [19] to the estimates as follows:

p̃f [h] =
p̂f [h] ·Of [h] + 0.5�|⌦T |

Of [h] + |⌦T |
,

where � is a parameter controlling the weight of the population
average. In this way, the success estimates are adjusted based

5The ? and 7 symbols used in this way imply > and <, or < and >.
6The terms of 1 and 2 in the numerator and denominator of p̂f [h] are

required in theory to generate the correct estimate over a Bayesian prior.
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Fig. 5: Visualization of the design matrix X and target vector y for
the SVM classification algorithms using clickstream features.

on the sample sizes of the corresponding interval to reduce
the possibility of overfitting based on a small number of
samples. This is particularly useful for the continuous features,
where ⌘ trades off the bias and variance of the KDE [18]; as
we will see in Sec. V, including � allows the estimators to
risk choosing a lower ⌘ (higher variance), thereby generating
a larger number of smaller-width intervals, since the p̂f [h]
are adjusted accordingly. To evaluate this tradeoff, we will
consider two separate instances: VID-A, which uses p̃f [h] for
the success estimates, and VID-N, which uses p̂f [h] instead.
SVM classification. These p̃f [h] (or p̂f [h]) are used as
features in a Support Vector Machine (SVM) classifier. We
choose SVM because it can readily generate complex decision
boundaries through application of different kernel functions
[20]. We visualize the design matrix X for the SVM scheme
in Fig. 5: with I users, J quizzes, and |V| = 8 clickstream
quantities, each instance n is described by an I + J + |V|
dimensional feature vector xn, with indicator features for user
and quiz, and the CFA probability estimates for each f . For the
estimates, we find interval hf such that vfn 2 Bf

h and then use
p̃f [hf (n)] (or p̂f [hf (n)]) as the corresponding feature value.
Then, the following optimization problem [18] is solved:

minimize
w,w0,✏

1

2
||w||2 + C

X

n2⌦T

✏n

subject to y0n ((w,xn) + w0) � 1� ✏n, 8n 2 ⌦T

✏n � 0, 8n 2 ⌦T

Here, we use a polynomial kernel of the form (z, z0) =�
⇡ · zT z0 + c0

�d, because (i) it readily generates product fea-
tures of degree d to help capture interaction terms between the
features and (ii) it was seen to give better performance than
other kernel choices (such as Gaussian). With the resulting w,
w0, and ✏, the individual probabilities ŷn 2 [0, 1] are generated
using the standard Platt scaling procedure implemented in [21].

For VID-A, d, C, ⇡, c0, �, and ⌘ are parameters to tune.
For VID-N, all except � must be tuned. We set the uf based
on our intuition for each clickstream quantity: u1 = u3 = 2,
u2 = u5 = 1, u4 = 10, and u8 = 5.

V. PREDICTION PERFORMANCE EVALUATION

In this section, we will compare the performance of the
algorithms presented in Sec. IV on our course data. In doing
so, we will find it informative to consider different subsets of
the dataset, to see how the performance varies under different
conditions (see Sec. II-B). In general, let ⌦u0,v0 ⇢ ⌦ denote



the set consisting of all instances n such that the user u(n)
has � u0 instances over ⌦ (i.e., having answered at least u0

questions) and the video q(n)  v0 (i.e., within the first v0
videos of the course).

A. Implementation Details

Software. The Biases and MF algorithms were each imple-
mented with libFM [22] using stochastic gradient descent
(SGD) with a small enough step size (0.01) and a large enough
number of iterations (8000) for convergence in all cases. For
VID-A and VID-N, the KDE method is implemented through
Python’s scikit-learn [21], and the SVM classifier through
libSVM [23] with the SMO algorithm. The naive and KNN
algorithms were programmed de novo in Python.
Training and cross validation. In evaluating the algorithms
over ⌦u0,v0 = ⌦0, we use k-fold cross validation (CV) [18] to
consider multiple training/test set partitions. We partition ⌦0

into k disjoint subsets ⌦1, ...,⌦k such that ⌦1[ · · ·[⌦k = ⌦0.
These subsets are formed as follows: letting Ni0 = {n 2 ⌦0 :
u(n) = i0} (i.e., all instances of user i0 in ⌦0), we randomly
permute Ni0 and allocate the lth set of b|Ni0 |/kc instances
to ⌦l; the remainder is allocated across the subsets randomly.
This process is repeated over all users, and is done to ensure
that the entries for each user are spread evenly across the sets,
since the |Ni| tend to be small. With the k subsets in hand,
for z = 1, ..., k each algorithm is trained on ⌦T = ⌦0 \ ⌦z

and tested on ⌦E = ⌦z , and each of the metrics are averaged
over the k trials. We set k = 5 in our evaluation.
Parameter tuning. We handle tuning of continuous and
discrete parameters differently in a procedure which we
followed closely for each algorithm. The continuous ones
were tuned over ⌦20,92 using a multi-dimensional grid search
procedure [20]. To do this, we first randomly selected 15%
of the instances from each subset ⌦l.7 Then, the following
is performed for each algorithm: (1) choose initial center
points cp 2 R, ranges rp 2 N, and step sizes sp 2 R>0

for each parameter p; (2) run 5-fold CV over all com-
binations in the set G = {2c1�r1s1 , ..., 2c1+r1s1} ⇥ · · · ⇥
{2cP�rP sP , ..., 2cP+rP sP },8 where P is the total number of
parameters; (3) set (c1, ..., cP ) = Gg , where g is the index
of the combination with the highest accuracy, and set sp to
sp/⇣, ⇣ > 1 8p; (4) repeat until (c1, ..., cP ) does not change
between three successive iterations. The final (c1, ..., cP ) are
taken as the tuned parameters. Due to space constraints we do
not report the initial cp, rp, and sp for each algorithm.

Since the behavior of the discrete parameters is not easy
to capture in the above procedure, we simply repeat the
search over the continuous parameters for each discrete choice,
choosing the best overall combination. The final values tested
for KM and d were in {1,...,10}, and for KN were in

7In the end, for KNN we used the entirety of ⌦20,92 because of its
sensitivity to selecting the specific neighbors for each user. For the other
algorithms, 15% was not seen to significantly affect the parameter choices.

8For the parameters that can take positive and negative values, G = {c1 �
r1s1, ..., c1 + r1s1}⇥ · · ·⇥ {cP � rP sP , ..., cP + rP sP } instead.

Biases �B = 0.105
MF KM = 3, �B = 0.115, �M = 0.181

KNN KN = 30, ↵ = 18.4, � = 1.9, � = 14.1, � = �5.0
VID-N d = 6, C = 0.011, ⇡ = 0.608, c0 = 1.88, ⌘ = 0.183

VID-A d = 6, C = 0.0062, ⇡ = 2.38, c0 = �1.44,
� = 0.030, ⌘ = 0.0186

Fig. 6: Tuned parameters for each of the algorithms.

{20, ..., 40}.9 In Fig. 6, we give the tuned parameters for each
algorithm that are used to generate the results in Sec. V-B.
Notice that as expected, VID-A has a lower ⌘ than VID-N.

B. Results
We now present an evaluation of the algorithms under

different scenarios, followed by additional discussion in Sec.
V-C. In comparing the performance between algorithms, we
will consider the percent improvement (PI) of each over the
Naive benchmark, which has an accuracy of roughly 0.66 and
an RMSE and AUC of 0.5 in each case. To obtain PI, we
measure percent increase for accuracy and AUC (higher is
better), and percent decrease for RMSE (lower is better). We
repeated the CV procedure 5 times for each algorithm in each
dataset (i.e., 25 runs each) and averaged the results.
Active users over the full course. We first evaluate the algo-
rithms on ⌦20,92, to only consider the active users who have
taken at least 20 questions. Fig. 7(a) tabulates the results for
each of the algorithms and metrics, and Fig. 8(a) shows the PI
in each case. Notice that VID-N and VID-A both outperform
the three standard algorithms at least slightly for each of the
metrics. For accuracy and AUC, the improvement differential
is marginal, with an increase of 0.27% (in both cases) from
Biases to VID-A and VID-N, respectively, while for RMSE,
it is more pronounced, with an increase of 0.89% from Biases
to VID-A. Among the standards, the KNN algorithm performs
the worst in all cases, which is consistent with results in other
work (e.g., [7]), but one surprising point is that MF has slightly
lower performance than Biases even though it adds factor
dimensions. Among the clickstream algorithms, we see that
VID-A performs better than VID-N on the accuracy metric
but that on RMSE and AUC they are roughly equivalent.
All users over the first two weeks. Next, we evaluate
the algorithms on ⌦0,20, to consider all users in the first
two course weeks, i.e., the beginning of the course. Fig.
7(b) tabulates the absolute metrics, and Fig. 8(b) shows the
percent improvements. Compared with the previous case, each
algorithm has lower performance, which is expected since
we have less information to learn from for each user and
quiz. Additionally, we see that MF now slightly outperforms
Biases, and that VID-A has substantially higher performance
than VID-N overall; this second point highlights the utility
of including both ⌘ and � in the video-watching scheme.
Finally, we see that both of the video-watching algorithms
again outperform the standard algorithms for each metric. But
the remarkable result here is the incremental improvement,

9The performance of MF in educational settings is known to saturate after
the first few factor dimensions [9]. For KNN, the performance did not vary
much within {20, ..., 40}.



Algorithm KNN Biases MF VID-N VID-A
Accuracy 0.7062 0.7234 0.7231 0.7238 0.7252

RMSE 0.4371 0.4321 0.4327 0.4277 0.4276
AUC 0.7359 0.7581 0.7580 0.7594 0.7593

(a) ⌦20,92: Active users over full course.

Algorithm KNN Biases MF VID-N VID-A
Accuracy 0.6963 0.6977 0.6977 0.7078 0.7117

RMSE 0.4622 0.4473 0.4464 0.4382 0.4364
AUC 0.6664 0.6864 0.6876 0.7066 0.7115

(b) ⌦0,20: All users over first two weeks.

Algorithm KNN Biases MF VID-N VID-A
Accuracy 0.6864 0.6968 0.6961 0.7023 0.7070

RMSE 0.4619 0.4479 0.4475 0.4400 0.4380
AUC 0.6796 0.7039 0.7046 0.7221 0.7276

(c) ⌦: All users over full course.
Fig. 7: Absolute performance metrics obtained from evaluating the
algorithms over different subsets of the course data. Bold denotes the
best achieved in each case.

which shows an increase of 2.06%, 2.02%, and 4.78% for
accuracy, RMSE, and AUC from MF to VID-A. Hence, it is
reasonable to conclude that video-watching data is particularly
useful for performance prediction early in a course when it is
not yet clear which users are active.
All users over the full course. Finally, we perform an
evaluation over ⌦ to consider learning on the full dataset.
Fig. 7(c) tabulates the absolute metrics, and Fig. 8(c) shows
the percent improvements. Compared with the previous two
cases, for both accuracy and AUC the algorithms show lower
performance than ⌦20,92 but higher than ⌦0,20; on the other
hand, the RMSE improvements are roughly consistent with
those from ⌦0,20. The improvement of VID-A compared with
the standards is 1.55%, 1.91%, and 4.60% for each metric,
which is substantial but not as high as for ⌦0,20.

C. Discussion, Intuition, and Extensions

Benefit of behavioral data to early prediction. The evalua-
tions consider one type of student behavior – video-watching
data – to see how it can improve performance prediction.
We see that incorporating it can achieve gains over standard
algorithms, but that the highest benefit comes from applying
it early in the course (Fig. 8(b)) for “quickest detection,”
discussed shortly. The reason for the high differential in this
case is that there is relatively few entries for each individual
user, which puts the Biases and MF algorithms at a clear
disadvantage since they rely on explicit user models (i.e., bi
and ui). On the other hand, while the clickstream algorithms
incorporate user/quiz biases (i.e., indicator features in Fig. 5),
they also leverage the video-watching data aggregated over all
users to assist in classifying CFA or not. The sensitivity of the
standards to per-user information is further emphasized when
considering all users over the entire course (Fig. 8(c)): the
performance improves, because there are more entries for each
user, but is not near what is possible when only considering
active users, because there are many who only take a few
quizzes (see Fig. 1). In future work, we plan to investigate how
other forms of behavioral data can be leveraged to enhance
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(b) ⌦0,20: All users over first two weeks.
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(c) ⌦: All users over full course.
Fig. 8: Percent increases in prediction performance relative to the
benchmark for each scenario. VID-N and VID-A are seen to outper-
form the standard algorithms in each case for each metric; however,
the incremental gain is the highest when considering VID-A in ⌦0,20.

CFA prediction in these settings as well.
Clickstream algorithms. VID-A was seen to outperform
VID-N substantially in the second two dataset partitions
considered. As discussed in Sec. IV-C, the difference between
them is that the smaller ⌘ for VID-A causes the KDE for
clickstream quantities 1-3,5 to generate more, smaller-width
intervals (e.g., for ⌦20,92 the average number of intervals
across these quantities was 13 for VID-A and only 2.4 for
VID-N), since � compensates for overfitting on small sample
sizes. Note also that ⌘ in VID-A is close to those used in Fig.
3, except that for the preliminary analysis we focused only on
the 2-3 intervals we identified visually.

In terms of these algorithms, we make three points here for
future investigation: (1) we believe the performance would
have been higher by including separate ⌘f and �f parameters
for each Quantity f (or groups of f ), (2) an alternative
to Bayesian adjustment could have been a constraint which
requires (in the continuous case) the difference in density area
|
R v2
v1

(p1f (v) � p0f (v))dv| � a in order for [v1, v2] to be an
interval, where a is another parameter to tune, and (3) due
to the discriminative nature of the clickstream quantities, a
decision tree-type algorithm [13] that uses these quantities for
branching may enhance prediction quality further.
SLN graph applications. Robust CFA prediction can be
useful to a MOOC course staff in numerous ways. Many of
these come in the form of SLN graph structures that could give
keen insight into student learning. We give a few examples:
Clustering students: One is a graph of students, where a given
pair is linked if they share similar predicted CFA scores across
all questions currently available. By varying the threshold
similarity required for a link, this could lead to different



clusters of students with enough correlation for the instructor
to address them collectively.
User and quiz detection: Another example is a bipartite graph
between user and assessment nodes, where a user is linked
to an assessment with a weight equal to the predicted CFA
score. The interface could then aggregate the link weights
across user nodes so that the instructor can identify those
who are struggling or need additional challenge and assign
supplementary material accordingly. It could similarly do this
for quiz nodes, to identify those which may need to be
explained more thoroughly or should be more challenging.
Study buddies: Another example is a graph of users in which
pairs who may work well together as study partners are linked,
by connecting those who tend to have opposing skills so they
can provide mutual aid to each other. One way of determining
this would be to find the correlation coefficient between each
pair’s predicted CFA scores on different quizzes, determine
each user’s preferences by ranking potential partners based on
these coefficients, and then apply a stable matching algorithm.

In each of these cases, predictions are particularly helpful in
the early stages of the course, since many of the CFA scores
are not yet known. We are in the process of developing an
instructor interface for our own MOOC platform, 3ND,10 and
with it we plan to investigate these applications further.
Other courses and assessments. As stated in Sec. II, our
MOOC setup is convenient for performance prediction using
clickstream data because of the 1:1 correspondence between
videos and quizzes. But other courses may not have this
property. The way to handle it in the general case is to have
the instructor add tags to specific lengths in videos that are
pertinent to a given assessment question. Then, by considering
the lengths between these tags as separate “videos” paired with
the corresponding questions, the methods developed here are
directly applicable.

VI. CONCLUSION

Student performance prediction is an intriguing research
area, and especially so for MOOC because of its potential ben-
efits, such as the definition of different SLN graph structures
that can help an instructor manage her course more effectively.
In this paper, using data from one of our own MOOC offerings,
we applied some standard algorithms to CFA prediction in
this setting, and showed how one type of behavioral data
collected about students – video-watching clickstream events –
can be used as learning features to improve prediction quality.
Through evaluation, we saw that our scheme outperformed the
standards under each dataset partition and metric considered,
and that the improvement was particularly pronounced in the
beginning of the course. Also, we saw that it is useful to parse
the clickstream data into summary quantities for each user-
video pair, because in doing so is possible to identify intervals
for these quantities that indicate a higher likelihood of a user
being CFA or not in answering the corresponding question. In
the future, we plan to consider other types of behavioral data,

10
http://www.3nightsdone.org

test over other course offerings, and incorporate our schemes
into our own instructor interface for the continuous evolution
of large-scale social learning networks.
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