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Abstract—Student video-watching behavior and quiz perfor-
mance are studied in two Massive Open Online Courses (MOOCs).
In doing so, two frameworks are presented by which video-
watching clickstreams can be represented: one based on the se-
quence of events created, and another on the sequence of positions
visited. With the event-based framework, recurring subsequences
of student behavior are extracted, which contain fundamental char-
acteristics such as reflecting (i.e., repeatedly playing and pausing)
and revising (i.e., plays and skip backs). It is found that some of
these behaviors are significantly correlated with changes in the
likelihood that a student will be Correct on First Attempt (CFA) or
not in answering quiz questions, and in ways that are not necessar-
ily intuitive. Then, with the position-based framework, models of
quiz performance are devised based on positions visited in a video.
In evaluating these models through CFA prediction, it is found that
three of them can substantially improve prediction quality, which
underlines the ability to relate this type of behavior to quiz scores.
Since this prediction considers videos individually, these benefits
also suggest that these models are useful in situations where there
is limited training data, e.g., for early detection or in short courses.

Index Terms—Clickstream data, data mining, performance
prediction, MOOC, learning analytics, social learning networks.

I. INTRODUCTION

OVER the past decade, technology advances have been
influencing the ways we can learn. One of the promi-

nent innovations has been the Massive Open Online Course
(MOOC). MOOC providers such as Coursera, edX, and Udac-
ity have offered courses reaching out to tens and even hundreds
of thousands of students within single sessions [1].

One salient feature of MOOCs is high dropoff rates, with typ-
ically less than 10% of students that initially enroll in a course
receiving a certificate of completion at the end [2]. This has
motivated several research studies in recent years on student
engagement, and on identifying factors associated with partic-
ipation levels (e.g., [3]–[7]). Various factors have been cited
as affecting engagement in turn; for one, the open nature of
MOOCs attracts a diverse set of students with a range of moti-
vations for why they enrolled in a course in the first place [2], [8],
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[9], with only a fraction identifying completion as one of their
goals. Among those targeting completion, other factors that have
been claimed to lower retention are the high student-to-teacher
ratios exhibited in these courses, and the asynchronous nature
of interaction between students and instructors [2].

Despite the challenges that MOOCs present, the data that
these platforms collect brings substantial opportunities to study
the process of student learning. The backend infrastructures
driving them capture detailed measurements on students as they
interact with the different forms of learning integrated into the
courses. To see this, consider the standard three learning modes
that MOOC platforms offer to students: video lectures, assess-
ments (e.g., in-video quizzes, homework assignments, and ex-
ams), and social networking (usually through discussion fo-
rums) [2]. For video content, individual clickstream events are
captured, with a click event generated and stored each time a
student interacts with a video, specifying the particular action
(e.g., pause, ratechange, skip), position, and time at which it
occurred. For assessments, the specific responses to individual
questions are recorded, and for the discussion forums, all posts
and comments are stored.

After a few years and thousands of course offerings through
these platforms, researchers have begun to take data mining ap-
proaches to studying MOOC student behavior (e.g., [5], [10]–
[13]). This data is also motivating the design of mechanisms to
help improve student outcomes in MOOCs. Notable examples
include algorithms (i) for early detections of students with high
likelihoods of dropping out of the course before its comple-
tion [4], [11] and of performing poorly on quizzes/exams [12],
[14], (ii) for recommendations of discussion participation [5]
and of certain peer grading allocations [15], and (iii) for indi-
vidualization of the content delivered to each student through
machine-learning-based user modeling [2].

What remain understudied are the relationships between how
students interact on the different learning modes. In particular,
we are interested to know: How is a student’s behavior related
to his/her performance in a MOOC? Developing such an un-
derstanding would have implications not only for theories about
how humans process information, but also for systems aiming
to improve student learning experiences. For one, early detec-
tion performance prediction systems that are usually driven by
past performance history—which tends to be a sparse source of
information in MOOCs—could be augmented with behavioral
signals that were identified as being correlated with low or high
student performance [12], [14]. Additionally, algorithms for up-
dating user models in individualization could be expanded to
include behavioral signals in making determinations as to the
most suitable path of learning for each student to take, as is
suggested in [2]. Furthermore, these relationships could be
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provided to course instructors directly, in the form of extended
learning and content analytics [16], [17]. The behavioral signals
could give instructors insight into which parts and/or types of
their content are causing confusion.

A. Measuring Behavior and Performance

Our work is motivated by the question of how behavior is re-
lated to performance in MOOCs. To do this, we will employ two
datasets coming from two different MOOCs we have instructed
on Coursera, described in Section II-A. We measure behavior
and performance from our datasets as follows:
Behavior. We focus on the behavior students exhibit while
watching lecture videos. This is the dominant mode of instruc-
tion that we provided in our courses, and is where users spend
the majority of their time on MOOC platforms [10], [13]. These
behaviors are captured through clickstream logs, which we de-
tail in Section II-B.
Performance. Our videos are equipped with in-video quiz ques-
tions, which are short multiple-choice exercises that we designed
to test a student’s knowledge recall of the content in the video
before he/she proceeds. Our measures of performance are the
scores that students obtain on their first attempts at these quizzes,
i.e., whether they are Correct on First Attempt (CFA) or not
(non-CFA). We use the in-video questions because they serve as
immediate feedback of the knowledge a student gained from the
behavior they exhibited in the video, thereby reducing the effect
of confounding factors (e.g., reviewing other materials, vary-
ing information retention based on a student’s innate cognitive
ability).1 The first attempt has also been selected in other works
as an objective measure of performance (in e.g., [12], [18]).2

Our goal, then, is to relate video-watching behavior to in-
video quiz performance. After filtering (see Section II-A), our
datasets contain 315 K and 416 K clickstream events corre-
sponding to 26 K and 36 K first-attempt quiz submissions.

B. Research Objectives and Contributions

In this paper, we formalize different ways that video-watching
clickstreams can be represented as sequences, and apply our
frameworks to meet two specific objectives (O1&2):

1) O1: To identify recurring video-watching behaviors of
students, such as reviewing content or skipping forward
repeatedly.

2) O2: To assess the impact of video-watching behavior on
in-video quiz performance, i.e., how patterns identified in
O1 and specific positions visited in each video are signals
of knowledge gained.

A few methods for representing student video-watching click-
streams have been proposed previously. Some have taken a
higher-level approach and computed aggregate, summary quan-
tities of the behaviors (e.g., fraction of video completed, duration

1Besides in-video quizzes, our courses also had machine-graded exams. How-
ever, the final exams in our MOOCs are much less suitable for quality evaluation
than are the in-video quizzes, because (i) only a small fraction of students ac-
tually took them (less than 5% in each case), and (ii) there were only a small
proportion of correct submissions since the exam questions were designed to be
much more difficult than the in-video quizzes.

2In general, slip and guess probabilities [19] could be inferred from subse-
quent quiz attempts. In our datasets, however, less than 9% of submissions have
more than one valid attempt registered.

of pause) [12], [13], others have looked at the most frequently
visited video positions [10], and others have searched for se-
quences of events in the clickstreams (e.g., play, then skip, then
pause) [11]. Motivated by this, in studying O1&2, we develop
frameworks for representing clickstreams as sequences that ac-
count for (i) the types of events, (ii) the positions in the video
that a student visited, and (iii) the duration or length of time
between the events and positions.

More specifically, our investigation is broken down into two
components: behavioral motifs and behavior-based prediction.
(1) Behavioral motifs. We first develop an event-based frame-
work to represent clickstreams (Section II), which captures event
types and their lengths. Leveraging this framework, we are able
to identify video-watching motifs, i.e., sub-sequences of stu-
dent behavior that occur significantly often, in our two datasets.
These motifs by themselves are informative of recurring behav-
iors for O1 (Section III), and for O2 we are able to correlate the
occurrence of certain motifs in a dataset with a change in the
likelihood of CFA through mixed-effects modeling. For exam-
ple, we find that a series of behaviors are indicative of students
reflecting on material, and tend to be associated with an increase
in the chance of CFA in one of our courses and of non-CFA in
the other. As another example, we identify motifs that are con-
sistent with rapid-paced skimming through the material, and
reveal that these are associated with a decrease in the chance of
CFA in both of our courses.

For these motifs, the identified positive and negative corre-
lations with CFA are particularly helpful, because for many of
them, either case is conceivable. For one, skimming could in-
tuitively be a sign of a student either correctly or incorrectly
perceiving familiarity with the material; our results indicate the
latter tends to occur more often. Also, we find that incorporating
the lengths in addition to the events is important to these find-
ings, because extracting motifs from sequences of events alone
does not reveal these insights.
(2) Behavior-based prediction. In investigating O2, we also
develop models for knowledge gained based on the clicks that
a student makes in a video. The quality of such a model can be
evaluated by considering its ability to generalize to incoming
samples through prediction. The higher the quality, the stronger
the association between video-watching behavior and quiz per-
formance. To this end, we study student performance prediction
(specifically, CFA prediction) for MOOCs. Enhancing CFA pre-
diction is an important area of research in its own right, because
such methods can improve systems for early detection e.g., of
struggling/advanced students and of easy/difficult material [12],
[14].

In seeking appropriate models for behavior-based prediction,
we find that while some behavioral patterns of the motifs are
significantly associated with quiz performance, their supports
across sequences are not sufficient to make large improvements
in online CFA prediction. As a result, we propose a second be-
havioral representation, which is based on the sequence of posi-
tions visited in a video (Section IV). In contrast to training over
a long course duration as in [12] and [17], we consider CFA pre-
diction on a per-video basis, in order to quantify the benefit ob-
tained by the positions in each individual video and to investigate
the application of earliest detection. In evaluating four differ-
ent algorithms using our framework (Section V), we find that
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Fig. 1. Basic information on the two datasets. The values in the right group of columns are the final numbers after data filtering.

likelihood-based algorithms obtain significant improvements in
prediction when compared to a baseline that does not use click
information, and that a Support Vector Machine (SVM)-based
algorithm also obtains improvements over the baseline (though
not as substantially). This underscores the ability to relate clicks
to knowledge gained, i.e., that video-watching behavior is re-
lated to quiz performance, and shows that behavioral infor-
mation is useful in situations in which multiple videos are not
available, e.g., in short courses or for detection early in a course.
Further, since the likelihood-based algorithms are directly based
on student behaviors (as opposed to the SVM algorithm which
learns a more complex function on top of the behaviors), they
can generate analytics about content that are interpretable to the
instructor.

As stated, the motif identification and early detection methods
we develop are aimed to help improve student quiz performance,
and ultimately to improve completion rates. For those students
who enroll in a MOOC for reasons other than the traditional
goal of passing the course, though, quiz performance and com-
pletion are not the right measures of efficacy [20]. It is worth
mentioning, then, that the scope of our methods are those stu-
dents aiming to achieve high scores. We will discuss possible
extensions in Section VII.
Summary of Contribution. Compared with other work (Sec-
tion VI), we make three main contributions in this paper:

1) We develop two new frameworks for representing student
video-watching behavior as sequences.

2) We extract recurring motifs of student video-watching
behavior using motif identification schemes, and associate
these fundamental patterns with quiz performance.

3) We demonstrate that video-watching behavior can be used
to enhance student performance prediction on a per-video
basis, e.g., for earliest detection.

II. DATASETS AND CLICKSTREAMS

In this section, we describe our datasets, and present our first
sequence specification based on events and lengths.

A. Our Two MOOCs

Our datasets come from two different courses that we have
instructed on Coursera: Networks: Friends, Money, and Bytes
(‘FMB’) and Networks Illustrated: Principles Without Calcu-
lus (‘NI’).3 Each of these courses teach networking topics, but
‘FMB’ explains the mathematical specifics behind the topics,
whereas ‘NI’ is meant as an introduction to the subject (see [2]
for more details). We obtained two types of data from Coursera
for each of the courses: (i) video-watching clickstreams, which
log user interaction with the video player, and (ii) information
on the in-video quiz submissions. We will describe the format

3www.coursera.org/course/{friendsmoneybytes,ni}

of the video-watching clickstreams in detail in Section II-B1,
which is where we develop our first representation framework.
Course format. The course formats are summarized in Fig. 1.
Each is made up of a series of lectures, which are in turn com-
prised of a set of videos. ‘FMB’ is a longer course, with 20
lectures, whereas ‘NI’ only has 6. ‘NI’ had more, shorter-length
videos, with a total of 115 videos and an average (avg.) length
of 5.4 min per video, whereas ‘FMB’ has fewer, longer-length
videos, with 93 total and an average length of 16.9 min.

As discussed in Section I-A, for each course, we included
in-video quizzes at the end of the videos, which were designed
to test a student’s recall of the information discussed in the
video. Each quiz is a multiple choice question, in radio-response
format, with 4-5 possible answer choices. For ‘FMB’, there was
one question at the end of each video, whereas for ‘NI’, each
of the 69 questions was associated with anywhere from 1-4
videos. In mapping videos to quizzes, we refer to “video n” as
the contiguous set of videos occurring after question n − 1 and
before question n.
User-Video Pairs. We extract User-Video (UV) Pairs from the
data, with two sets of information for video and quiz n:

� (i) Video-watching trajectory: The set of video-watching
clickstream logs (events) for the user in video n.

� (ii) CFA result: Whether the user was CFA or non-CFA on
quiz n.

These UV Pairs are how we measure video-watching
behavior and quiz performance in each course, as discussed in
Section I-A.

In total, for ‘FMB’ there were 122.5 K UV Pairs with
566 K click events, and for ‘NI’ these numbers were 149 K
and 882 K, respectively. After removing any UV Pair that
had at least one null, stall or error contained in its video-
watching trajectory, we obtain the totals given in Fig. 1. The
avg. CFA score across the UV Pairs are also shown here: 0.663
for ‘FMB’ (standard deviation (s.d.) = 0.473), and 0.750 for
‘NI’ (standard deviation = 0.433).

The number of observed UV Pairs is large, but also rather
sparse if we consider the numbers that we would have to work
with if all the students answered all the questions in each course.
In particular, only 7.6% and 19.7% of the possible pairs are
present in ‘FMB’ and ‘NI,’ respectively.4 The large number
of unanswered questions is one of the challenges to MOOC
performance prediction in the first place [12]. We will see in
Section V that video-watching behavior improves the quality
CFA prediction in the presence of this sparsity.

4Subsequent attempts are even more sparse. If we consider those attempts
made by a student on a quiz occurring (i) after the first one, (ii) at least three
seconds after the previous one (so it is not obviously a random guess), and (iii)
at most two minutes after the previous one (so the student did not obviously
move away from the question to look for the answer), only 8.2% and 5.5% of
the user-quiz pairs in ‘FMB’ and ‘NI’ have more than one attempt.
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Fig. 2. Illustration of a sequence of clicks E1 to E4 on a video, where the
horizontal axis denotes the video length. This example will generate 5 events
according to the framework proposed in Section II-B based on events and
lengths. The length lj for the events that have this property (not pauses) are
depicted above the diagram.

B. Processing Clickstream Events

1) Our Nomenclature for Events: A clickstream log is one
of four types: play, pause, ratechange, or skip. Each
time one of these events is fired, a data entry is recorded that
specifies the user and video IDs, event type, playback position,
playback speed, and UNIX timestamp for the event.

Formally, let Ei denote the ith click event that occurs while
a user is watching a video. We write Ei = 〈ei, pi , ti , si , ri〉,
where ei is the type of the ith click, pi is the video position of
the player (in seconds) right after Ei is fired, ti is the UNIX
time (in sec) at which Ei was fired, si is the state of the video
player—either playing or paused—after the click Ei occurs, and
ri is the playback rate (i.e., speed) of the video player resulting
from this event. The logs are sequenced chronologically for a
UV Pair, i.e., t1 < t2 < · · ·. Based on the Ei for a UV Pair, we
define the following events:
Play (Pl): A play event begins at the time when a click event
Ei is made for which the state si is playing, and lasts until the
next click Ei+1 . It occurs for a duration d = ti+1 − ti and has
a length l = pi+1 − pi .
Pause (Pa): A pause event is defined in the same way as a play
event, except it is for which the state si is paused, and does not
have any length by definition.
Skip back (Sb): A skip back (i.e., rewind) event occurs when
the type ei = skip and p′i > pi , where p′i is the position of the
video player immediately before the skip. If si−1 = playing,
then p′i = pi−1 + (ti − ti−1) · ri−1 ; if si−1 = paused, then
p′i = pi−1 . The length of the skip is l = |pi − p′i |, and there
is no associated duration.
Skip forward (Sf): A skip forward (i.e., fast forward) event is
defined as Sb is, except it captures the case where pi > p′i .
Ratechange fast (Rf): This occurs when ei = ratechange
and the new rate ri > 1.0.5 There is no duration or length.
Ratechange slow (Rs): This occurs when ei = ratechange
and ri < 1, again with no duration or length.
Ratechange default (Rd): This is when ei = ratechange and
ri = 1, i.e., the user is returning to the default speed.

With these definitions, the sequence of events for a UV Pair
becomes (ê1 , ê2 , . . .) for êj ∈ E = {Pl, Pa, Sb, . . .} , |E| = 8.
Each êj may have an associated duration parameter dj and/or
length parameter lj . Fig. 2 shows a schematic for illustration;
in this example, the clickstreams would generate: Pl, with
l1 = (t2 − t1) · r and d1 = t2 − t1 ; Sf, with l2 = p2 − p′2 ; Pl,
with l3 = p3 − p2 and d3 = t3 − t2 ; Pa, with d4 = t4 − t3 ; and

5On Coursera, the default player speed is 1.0. Users can vary this between
0.5 and 2.0, in increments of 0.25.

Sb, with l5 = p′4 − p4 . Note that we are inserting Pl and Pa
events in-between other events, to incorporate the state of the
video player during those times. This critical information is not
captured through the raw events along, and has been neglected
in other work (e.g., in [11]).
De-noising clickstreams. It is important to remove noise in the
video-watching trajectories associated with unintentional user
behavior. We handle two cases of events separately: (i) Combin-
ing events: We combine repeated, sequential events that occur
within a short duration (5 sec) of one another, since this pat-
tern indicates that the user was adjusting to a final state. This
is a common occurrence with forward (Sf) and backward (Sb)
skips, where a user repeats the same action numerous times
in a few seconds in seeking the final position; this should be
treated as a single skip to the final location. Similarly, a se-
ries of rate change (Rf, Rs, or Rd) events may occur in close
proximity, indicating that the user was in the process of ad-
justing the rate to the final value, which should also be treated
as a single event. Formally, if there is a sequence of clicks
Ei,Ei+1 , . . . , Ei+K for which ei = ei+1 = · · · = ei+K and
ti+k+1 − ti+k < 5 ∀k ∈ {0, . . . ,K − 1}, then we use E′

i =
〈ei, pi+K , ti , si+K , ri+K 〉 in place of Ei,Ei+1 , . . . , Ei+K .
(ii) Discounting intervals: Clickstream logs are the most de-
tailed accounts of a student’s video-watching behavior that are
available for online courses today. Even so, it is not possible
to determine with complete certainty whether a student is ac-
tually watching/focused on the video for the duration of time
in-between the occurrence of two events. Still, we can identify
two situations in which a Pl or Pa event should not be inserted
in-between Ei and Ei+1 to capture the state of the video player.
The first situation is if the duration ti+1 − ti is extremely long;
in this case, the user was obviously engaging in some off-task
behavior during this time. If si = paused, the threshold on
the duration is set to 20 min (as in [21] for web inactivity); if
si = play, then the threshold is set to the length of the video.
The second situation is if Ei and Ei+1 occur on two different
videos; here, there is no continuity as the user must have exited
the first video and opened the second.

2) Event Lengths: We now look to discretize the length lj
and duration dj of the events. Fig. 3(a) gives the boxplots of the
event distributions from each course. dj for Pl and Pa is shown,
and we depict lj for Sb and Sf (we show only values that are at
least 0.1 sec). Basic statistics of each distribution are also given
in Fig. 3(b); specifically, the three quartiles Q1 , Q2 , and Q3 are
shown,6 as are the number of events for each distribution (Size)
and the respective fractions (Frac).

We make three high-level observations in comparing the dis-
tributions. In each case, we employed a Wilcoxon Rank Sum
(WRS) test [22] for the null hypothesis that there was no dif-
ference between the distributions for each dataset overall, and
report the p-values (p) from those tests:7 (i) ‘FMB’ has longer
events: The distributions for each event (Pl,Pa,Sb, andSf) are
shifted to the right for ‘FMB’ relative to those for ‘NI’, meaning
that ‘FMB’ tends to have longer events. In each of the four cases,
the p-values (p) were highly significant (p ≈ 0). The fact that

6By definition, quartiles separate data in increments of 25%.
7We use the WRS test because Shapiro-Wilk tests detected significant depar-

tures from normality for each of the distributions.
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Fig. 3. Distribution of the lengths for four events across both ‘NI’ and ‘FMB’.
For Pl and Pa, this represents the time elapsed before the next event, and for
Sb and Sf, this is the distance of the skip. (a) Boxplots of the distributions for
each dataset. (b) Tabulated statistics for the distributions.

Pa is longer for ‘FMB’ is consistent with this subject material
being more difficult. (ii) Sf is longer than Sb: The distribution
of Sf is shifted to the right relative to Sb for both ‘FMB’ and
‘NI’ (p < 1E − 6). This indicates that when students skip for-
ward, they tend to pass more material than they review when
skipping back. Sb also occurs more frequently than does Sf for
both courses. (iii) Pl is longer than Pa: The distributions for
Pl and Pa in both datasets indicate that users tend to stay in
the playing state longer than in the paused state (p ≈ 0). This
effect is stronger in the case of ‘NI’, which is again consistent
with the fact that the ‘FMB’ material is more difficult.
Event intervals. Clearly, lj and dj can vary substantially be-
tween events and datasets. To account for this relative variation,
we will use the four intervals in-between the three quartiles
for each event (given in Fig. 3(b)) to discretize the lengths.
We specify three cases: (i) êj ∈ {Sb, Sf}: When the event
is a skip, we map it to êj qj , where qj ∈ {1, 2, 3, 4} is cho-
sen such that lj ∈

[
Qqj −1 , Qqj

)
, with Q0 = 0 and Q4 = ∞.

For example, suppose that event Ei is such that êj = Sb and
lj = 20 sec. In either course, this would be mapped to Sb2.
(ii) êj = Pa: The mapping here works the same as in the first
case, except qj is chosen based on dj instead. (iii) êj = Pl:
Two long duration play events could still have different quali-
tative interpretations.8 To account for this, when êj = Pl, we
map it to êj qj,1 êj qj,2 . . . êj qj,K , where qj,k ∈ {1, 2, 3} for
k = 1, . . . ,K is chosen according to

qj,k =

{
3, dj − δj,k > Q3

arg minq j , K

(
dj − δj,K ≤ Qqj , K

)
, otherwise,

with δj,k =
∑k−1

k ′=1 Qqj , k ′ at each step. For example, suppose an
event is Pl with dj = 550 sec. For the quartiles in ‘NI’, this
would be mapped to Pl3 Pl3 Pl2.

8The other events do not have this issue since they are not related to new,
incoming information.

3) Event-Type Sequence Specification: Let S = {Pl1, Pl2,
Pl3, Pa1, . . . , Pa4, Sb1, . . . , Sb4, Sf1, . . . , Sf4, Rf, Rs, Rd} be
the set of 18 events with quantized lengths. For each UV Pair, we
encode the clickstream log E1 , . . . , En as S = (s1 , s2 , . . . , sn ′),
where each sj ∈ S is chosen according to the specifications in
Section II-B2. As we will see in Section III, using this alphabet
that incorporates event types and lengths allows us to obtain
insights that cannot be gleaned with events alone.

For comparison, we will refer to an event with length 1 as
“short,” 2 as “medium,” 3 as “medium-long,” and 4 as “long.”

III. MOTIFS OF VIDEO-WATCHING

Using the event-type specification, we identify short, recur-
ring sub-sequences within user video-watching behavior, i.e.,
behavioral motifs. As we will see in Section III-B, these motifs
capture fundamental characteristics such as reflecting on or re-
viewing material. We will also see that some of these motifs are
significantly associated with student CFA scores.

A. Motif Extraction

We make use of the MEME Suite software package [23] for
motif extraction. MEME has been applied in bioinformatics
for motif identification in sequences of nucleotides and amino
acids.
Model and algorithm. The underlying algorithm is based on
a probabilistic mixture model, where the key assumption is
that each subsequence is generated by one of two components:
a position-dependent motif model, or a position-independent
background model. Under the motif model, each position j in
a motif is described by a multinomial distribution, which spec-
ifies the probability of each character (i.e., each s ∈ S from
Section II-B3) occurring at j. The background model is a multi-
nomial distribution specifying the probability of each character
occurring, independent of the positions; we employ the stan-
dard background of a 0-order Markov chain. A latent variable
is assumed that specifies the probability of a motif occurrence
starting at each position in a given sequence [23].

Motif extraction is formulated as maximum likelihood esti-
mation over this model, and an expectation-maximization (EM)
based algorithm is used to maximize the expectation of the
(joint) likelihood of the mixture model given both the data (i.e.,
the sequences) and the latent variables. We use the standard
Dirichlet prior based on character frequencies for EM.
Extraction. Each UV Pair’s clickstream sequence is encoded
using the 24-character protein alphabet [23]. To do this, we
choose the first 18 non-ambiguous characters F , and then spec-
ify a 1:1 mapping S ↔ F . Whereas other work has focused on a
single motif width (e.g., at 4 in [11]), we extract those of widths
w ∈ {4, . . . , 10} from our datasets, with E-values (defined be-
low) at most 0.05. We will see that both long and short motifs
can be insightful (see Fig. 7).

For each motif, we obtain its E-value, and its position specific
probability matrix (PSPM): (i) E-value: The E-value judges
overall significance. It is defined as the fraction of motifs (with
the same width and occurrences) that would have higher log
likelihood ratio if the sequences had been generated according
to the background model. (ii) PSPM: This gives the fraction
of times that each character appears in each position of the
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motif, taken over all sightings of the motif in the dataset. In the
following, denote the PSPM for a motif by P = [pi,j ], where
pi,j is the fraction of times event j occurs at position i.
Representation. At each position i, we consider all events j with
pi,j ≥ 0.25.9 Formally, let Ai be the sequence of indices into
the event set S for i, arranged such that pi,Ai (k) ≥ pi,Ai (k+1)
and pi,Ai (k+1) ≥ 0.25 ∀k. Then, there are three cases on the
way i is represented:

1) If |Ai | > 1, i is represented as
[
SAi (1) SAi (2) · · ·

]
.

2) If |Ai | = 1, then the square brackets are omitted, with just
SAi

displayed.
3) If Ai = ∅, then i is displayed as ‘�’ to indicate that this

position was taken by a variety of events, none of which
occurred even 25% of the time.

For example, the sequence [Pl2Pl3]Pa1 � [Sf1Sf2Sf4]
is of length 4, with the first position being either Pl2 or Pl3 at
least 50% of the time (Pl2 at least as often as Pl3), the second
position being Pa1 at least 25% of the time, the third position
being any event, and the last being either Sf, Sf2, or Sf4 at
least 75% of the time.
Motif support. For each motif, we obtain the fraction of se-
quences (FS) in which it occurs, i.e., its support across se-
quences, as well as the number of videos it appears in. We
also obtain FS0 and FS1 as the fraction of non-CFA and CFA
sequences in which the motif appears, respectively.
Mixed-effects modeling. To relate video-watching behavior to
quiz performance, we seek to quantify the effect that each motif
has on whether a UV Pair will have a CFA or a non-CFA re-
sponse. In fitting such a model, it is important to account for the
fact that the individual students and videos can affect the CFA
result, since each appears multiple times in the dataset. Hence,
for each course, we fit a logistic mixed-effects model [24] to
CFA score, with the frequencies of the motifs treated as fixed
effects and the specific user and video IDs as random effects.
We denote the fixed-effects matrix is A = [as,m ], with as,m as
the number of times motif m appears in sequence s.

If the p-value (p) for a motif in this model is low, we can
conclude that the motif has a significant effect on the CFA score
independent of specific videos and students. To obtain a measure
of effect size for each motif, we convert their coefficients from
the fitted model (which are expected changes in the log-odds of
CFA) to the expected change in CFA probability (Δc) for each
additional occurrence of the motif.

B. Results

We obtained 87 and 123 motifs from ‘FMB’ and ‘NI’, respec-
tively, which are the subject of the following analysis.

1) Motif Supports: We first analyze how the motif supports
vary across sequences, videos, and students. We find that the
supports are reasonably high across videos and students, but
that each individual UV Pair tends to not exhibit many motifs.
Sequences. In Fig. 4, we plot the Empirical CDF (ECDF) of
the fraction of sequences that each motif appears in, for both
CFA and non-CFA, considering all sequences with at least one
motif. In each course, the supports are similar: for ‘FMB’, each
motif appears in 7.1% of the non-CFA sequences on average,

9With 18 different events, a threshold of 25% is roughly 5 times the expected
occurrence from a uniform random selection of events.

Fig. 4. ECDFs of the number of sequences that each motif appears in, for both
CFA and non-CFA. The supports are consistent between the CFA and non-CFA
groups in each course. (a) ‘FMB’, (b) ‘NI’.

Fig. 5. ECDFs of the number of students that exhibit each motif, across both
CFA and non-CFA sequences. In both courses, CFA sequences have a higher
support for motifs across users. (a) ‘FMB’, (b) ‘NI’.

Fig. 6. ECDFs of the number of videos that each motif appears in, across both
CFA and non-CFA sequences. In both courses, CFA sequences have a higher
support for motifs across videos. (a) ‘FMB’, (b) ‘NI’.

and 7.7% of the CFA; for ‘NI’, each appears in 5.9% for both
CFA and non-CFA. Considering the fixed-effects matrices A,
then, less than 8% of their entries are non-zero. In both courses,
the motifs with largest support (first row in Fig. 7(a) and (b))
appear in > 25% of the sequences.
Students. Fig. 5 gives the ECDF of the fraction of students who
trigger each motif at least once (i.e., across all videos the student
watched), over students who trigger at least one motif. We see
that more users exhibit more motifs in CFA than in non-CFA, for
both courses: for ‘FMB’ (resp. ‘NI’), each motif is on average
triggered by 15.2% (12.8%) of users in the CFA sequences, and
only 11.1% (9.9%) in non-CFA.
Videos. In Fig. 6, we show the ECDF of the number of videos
that each motif occurred in at least once and at least 10 times
(i.e., across all students who saw the video). Overall, CFA has
higher support than non-CFA over videos. We also see that the
supports decrease for higher thresholds, e.g., for ‘FMB’, while
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Fig. 7. Representative sample of motifs identified for each course. Each motif is grouped by the dominant event it contains outside of Pl. FS is the fraction of
sequences over both CFA and non-CFA, while FS0 and FS1 are for the separate cases. Δc is the estimated change in the probability of success (CFA) for every
additional occurrence of the motif, and the p-value (p) is the significance of Δc (a . indicates p ≤ 0.1, a ∗ indicates p ≤ 0.05, and a ∗∗ indicates p ≤ 0.01).
(a) Motifs for ‘FMB’. (b) Motifs for ‘NI’.

the top 20% of motifs appear in at least 67 videos for CFA, this
drops to only 18 videos considering at least 10 occurrences.

We will turn now to analyze the specific motifs, and identify
patterns associated with quiz performance. Given that the matrix
A is sparse (even among those sequences that have at least one
motif), note that we will move to a more appropriate model for
online CFA prediction in Section IV.

2) Individual Motifs: We inspect patterns in the most sig-
nificant of the 210 extracted motifs. This list is obtained by
applying the following procedure. First, noticing that all motifs
contain play (Pl) events, we group them into categories based on
the most recurring alternate event, leading to four groups. Then,
within each category, we consider each motif that either (i) has
one of the top-5 highest supports or (ii) has a significant p-value
(≤ 0.1) returned from the mixed-effects model. Finally, if one
motif is a subsequence of another, then we remove the one that
has lower support or is less significant.

In Fig. 7, we give the representative sample of these motifs
that are mentioned in the following discussion, by group. Each
motif is assigned an ID consisting of its group and number (e.g.,
Pa II in ‘FMB’ is motif Pl2 Pa4 Pl2 Pa4). In Fig. 8, we
visualize the key properties exhibited by each group.
Overview. The motifs exhibit many similar structural attributes,
which occur in spite of the fact that the encoding quantiles are
different for each event and course (see Fig. 3). Also, since
MEME finds ungapped motifs (i.e., those existing as exact
matches in the data, without a separate layer of similarity match-
ing), these identified behaviors exist exactly in the sequences,
contrary to other work [11] which has resorted to approximate
string searching. The motifs in the Pa (pause) group have the

largest supports (FS) overall (≥ 10% mostly), which is consis-
tent with the fact that there are fewer skip and ratechange
events in the datasets (see Fig. 3(b)).

We present our most interesting observations for each group:
Reflecting (Pa): The occurrence of play together with pause
indicates that lectures are generally thought-provoking, causing
students to reflect on material they just saw (see Fig. 8(a)). In
both courses, the events forming the motifs in this group cover
the entire range from short to medium-long plays (Pl1–Pl3)
interspersed with short to long pauses (Pa1–Pa4).

The motifs with highest supports in ‘FMB’ and ‘NI’—Pa
I—can be viewed as sequences of medium to medium-long
plays with medium-long to long pauses in-between. This be-
havior is not significantly associated with CFA or non-CFA in
either case, though (p > 0.1). Motif Pa III in ‘FMB’ is different
from these in that it has a short play interspersed too, and it is
significantly correlated with an increase in the chance of CFA
(p < 0.02,Δc = +4.89%). This may indicate that a student
pausing longer relative to the plays in-between is an effective
strategy in ‘FMB’. Motifs Pa II in ‘FMB’ and ‘NI’, with medium
plays followed by long pauses, also do not differentiate between
the groups (p > 0.1).

The comparison between Pa IV in ‘FMB’ and Pa III in ‘NI’ is
particularly interesting. Both of these motifs are short pauses
and plays interspersed, indicating a tendency to reflect fre-
quently on a small amount of material at a time. While in
‘FMB’ it is significantly associated with an improvement in
CFA (p < 0.01,Δc = +5.80%), in ‘NI’, it is associated with
a decrease in the chance of CFA (p < 0.05,Δc = −5.29%).
Short pauses in ‘NI’ may be a sign of unresolved confusion.
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Fig. 8. Illustration of the key video-watching behaviors exhibited by each of the four motif groups in Fig. 7. For brevity, we omit variations that exist between
the individual motifs within the groups. In each case, the horizontal axis represents the video length, as in Fig. 2. For (b) and (c), horizontal jumps represent skips
with lengths relative to the distance, whereas the vertical jumps in (b) just indicate continuity. (a) Reflecting (Pa): Pl2 Pa4 Pl2 Pa2, (b) Reviewing (Sb): Pl2
Sb3 Pl3 Sb3, (c) Skimming (Sf): Pl1 Sf3 Pl1 Sf2, (d) Speeding (Rf): Rf Pl2 Rd Pl2 Rf.

Reviewing (Sb). From the six motifs in the Sb group, we iden-
tify two interesting, recurring subsequences:Pl2Sb3Pl2Sb3
(Sb I and III in ‘FMB’, andSb I in ‘NI’), andPl2Sb2Pl2Sb2
(Sb III in ‘NI’). Roughly speaking, each of these is associated
with playing for a length of video, and then reviewing some or
all of that content (see Fig. 8(b)). To see this, consider the ranges
of Pl and Sb from Fig. 3 associated with these subsequences:
for ‘FMB’, Pl2 covers 14 to 68 sec, and Sb2 to Sb3 covers 18
to 73 sec; for ‘NI’, these ranges are 12 to 71 sec and 13 to 55
sec. The play and skip ranges are closely overlapping in each
case. Taking the extreme ends of each range, they are associated
with skipping back anywhere from 1 min below the starting play
point to 50 sec after it,10 which are local considering the video
lengths.

Note that 2 of the 4 motifs containing these behaviors are
significantly correlated with an increase in CFA probability
(p < 0.07,Δc > +4.0%). The fact that Sb II of ‘FMB’ has
the highest Δc = +7.52 may also indicate that reviewing more
than what was just played can further increase the chance of
success, given the presence of long skip backs (Sb4) here.

We also considered the number of skip backs originating
at each video position across all UV Pairs. We find that the
largest origination point of these events is at the end of videos.
In particular, out of all Sb events, those originating within 10
sec of the videos’ end constitute roughly 15% of the total in
‘FMB’ for both non-CFA and CFA sequences.11 This, combined
with the motifs suggesting improvement when reviewing occurs,
implies that those students who are reviewing multiple times
before answering a quiz have more success.

The notable exception to this is Sb II in ‘NI’. Here, re-
vision is associated with a decrease in the chance of CFA
(Δc = −5.93%). Similar to Pa III discussed before, this may
be an indicator of excessive confusion in this course.
Skimming (Sf). In both of the courses, the motifs in the Sf
group are primarily medium to long skips forward with short
to medium plays in-between. Further, the skips are longer than
the plays occurring before and after; comparing the lengths of
Pl and Sf events in Fig. 3, we see that for both courses, range

10We assume a default playback rate as an approximation.
11If we take the highest location of Sb for each video outside of the last 10

sec, these positions contain roughly 4% of the total for non-CFA and CFA.

Qj to Qj+1 for Sf is always larger than Qj−1 to Qj for Pl.
This recurring behavior can then be interpreted as skimming
through the material quickly with less exposure to the material
(see Fig. 8(c)). We find that 3 of these 6 motifs are significant in
favor of non-CFA (p < 0.07,Δc < −4.0%), in contrast to the
work in [12] where the total number of skips forward in a se-
quence was not found to be correlated with the CFA probability.
This difference underscores the utility of considering the click-
stream sequences, rather than computing aggregate quantities
to summarize them.

Also, Sb and Sf occurring together in a motif (e.g., Sf II
in ‘FMB’) can possibly be interpreted as skipping forward with
caution. Still, we find that this is close to being significant
in favor of non-CFA (p = 0.13). There is an exception to the
generally negative correlations in the Sf group, though: Sf
II in ‘NI’, where skimming is associated with an increase in
CFA probability (p < 0.1,Δc = +6.45). With short plays in-
between long skips forward, this is fast skimming, and can be
explained by the fact that in some cases, a student will already
be familiar with the more basic ‘NI’ material.
Speeding (Rf). Rf I in ‘NI’ indicates that viewing the ma-
terial at a faster than default rate, i.e., speeding, is sig-
nificantly associated with an increase in CFA probability
(p < 0.01,Δc > +8.0%). The other motifs making up the Rf
groups for each course have students returning to the default
rate (Rd), indicating they are slowing down for important con-
tent (see Fig. 8(d)). In ‘FMB’, this is positively associated with
CFA in one case (Rf II, with Δc = +9.3%), whereas in ‘NI’, it
is significantly associated with a decrease in CFA score in both
cases (Rf II and Rf III, with Δc < −8.0%). In ‘NI’, slowing the
rate back down to the default could be a sign that a student saw
something confusing, but did not take the time to e.g., reflect or
review to clear up the confusion.

3) Key Messages: Overall, we draw a few conclusions.
Motif groups. There are four groups of motifs: (i) Reflecting,
i.e., pausing to reflect on the video material repeatedly. If the
time spent reflecting is not too long relative to the time spent
watching, this tends to be correlated with a higher chance of
success on the quiz. At the same time, if the pausing is very
short, it could indicate unresolved confusion. (ii) Reviewing,
i.e., repeated review of the video content just watched. This
tends to be correlated with an increase in the chance of success.
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(iii) Skimming, i.e., skipping through video material quickly.
This tends to be associated with a lower chance of success, even
when done with caution. (iv) Speeding, i.e., watching the video
at a faster than default rate and slowing down at certain times.
Different variations are associated with different impacts on the
chance of success.
Importance of CFA associations. Some motifs are significantly
correlated with substantial changes in the probability of CFA,
independent of the specific videos and/or students (from Δc in
Fig. 7, the increases can be as high as 9%, and the decreases
as low as 10%). For each motif, the direction of the association
is particularly important, because in many cases either would
be intuitive. For example, a reviewing motif could presumably
come from a student reinforcing material in the video prior to
taking the quiz (in line with an increase in CFA probability)
or from excess confusion caused by the material in the video
(in line with a decrease in CFA probability), but the results
indicate the former tends to be more likely in these courses. As
another example, skimming could come from a student believing
confidently that he/she is already familiar with the content in a
video, which could intuitively be either a correct (increase in
CFA probability) or an incorrect (decrease in CFA probability)
perception, but results favor the latter.
Importance of lengths/durations. We emphasize the impor-
tance of having included the lengths/durations, in addition to
the events, in our framework from Section II-B3 in order to
make these conclusions. For instance, the sequence Pl Sb Pl
Sb identified in [11] cannot be associated with reviewing, be-
cause it is not clear how far back the student has skipped relative
to having played in-between. In the same way, Pl Sf Pl Sf
cannot be concluded as skimming, because the lengths of play
and skip are not indicated in the model. Also, even small changes
in the motif lengths can affect significance (e.g., in ‘FMB’, while
Pa I is associated with CFA, Pa II is not).

IV. MODEL OF POSITION SEQUENCE

In this section, we will formalize our second sequence rep-
resentation, which factors in the location in the videos that a
student visited. Then, we will present CFA models based on
this framework, which will be evaluated in Section V.

A. Modeling Framework

1) Definitions: Let v ∈ V denote video v in the set of videos
V for a course, indexed chronologically (i.e., by release date
of the videos).12 Also, let c ∈ O denote class c in the set of
binary classes O = {0, 1}, where c = 0 indicates a non-CFA
submission and c = 1 is CFA. With u ∈ U as user u in the set
of all users U , we let Uv ⊂ U be the set of users who have a UV
Pair for v, and Uv ,c ⊂ Uv be those who fall into class c with
respect to their answer submissions. For evaluation in Section V,
we will generate training (Uv

T ) and test (Uv
E ) sets as subsets of

Uv ; Uv
T and Uv

E are always chosen such that Uv
T ∩ Uv

E = ∅.
2) Position-Based Sequence Specification: We will divide

each video into a number of intervals. Let hv be the length
(in sec) of v. We define wv to be the width that par-

12Recall from Section II-A that we define a “video” to be all videos for a
quiz.

titions v into N (wv ) = �hv/wv � uniform intervals, such
that interval i ∈ Pv (wv ) = {1, . . . , N (wv )} spans the range
[(i − 1) · wv , i · wv ]. For each UV Pair, we can then model
the video-watching behavior as a sequence of positions pu,v =
(ρ1 , ρ2 , . . . , ρn , . . .), where ρn ∈ Pv (wv ) is the index of the
nth position visited.13

To generate these sequences, we first apply the same denois-
ing procedure described in Section II-B1 to each event Ei . Then,
for each UV Pair, starting with p = () we do the following:

1) For E1 , append �p1/wv � to p.
2) Consider each sequential pair of events Ei,Ei+1 , i ≥ 1.

If the state si = paused, then only �pi+1/wv � is added
to p. But if si = playing, then:

a) If the event ei �= skip, then (�pi/wv � + 1,
. . . , �pi+1/wv � − 1, �pi+1/wv �) is added to p.

b) If ei = skip, then (�pi/wv � + 1, . . . , �p′i/wv

� − 1, �p′i/wv �, �pi+1/wv �) is appended instead.14

For example, suppose hv = 300, wv = 15, and a user
generates E1 = 〈play, 0, 0, playing, 1.0〉, E2 = 〈skip, 200,
50, playing, 1.0〉, E3 = 〈ratechange, 230, 80, playing,
1.25〉, and E4 = 〈pause, 300, 127, paused, 1.25〉 on the video.
Then, p = (0, 1, 2, 3, 13, 14, 15, 15, 16, . . . , 20).

3) Model Factors: There are (at least) three types of infor-
mation for each pu,v that could have an effect on performance:
(1) Positions. First is the number of times a given position
i ∈ Pv (wv ) was visited. One would expect these to differ be-
tween CFA and non-CFA, because certain parts of videos will be
more important to questions. We can see this by referring to the
motifs that had correlations with increases or decreases in CFA
probability. CFA sequences with reviewing motifs may have
more visits to positions associated with the questions through
repeating. On the other hand, non-CFA sequences with skim-
ming motifs may have less visits to these important positions.
Sequences with reflecting motifs may have more visits to im-
portant positions through pausing, too.
(2) Transitions. Second is the number of transitions between
the positions, i.e., the number of times a given tuple (i, j) is a
subsequence of pu,v . Considering each tuple (ρn , ρn+1):

1) If ρn+1 < ρn , then the user had skipped back. We call this
a backward transition.

2) If ρn+1 > ρn + 1, then the user had skipped over the
material in (ρn , ρn+1). This is a forward transition.

3) If ρn+1 = ρn + 1, then the user moved directly to the next
position. This is a direct transition.

4) If ρn+1 = ρn , then the user had some event within the
current position. This is a repeat transition.

We say that direct and repeat transitions are local, whereas
backward and forward are non-local. As with positions, the
transition factors can capture the motif behavior associated with
changes in CFA probability, except in terms of sequences of
visits, e.g., backward transitions captureSb in a reviewing motif,
and forward transitions capture Sf in a skimming motif.
(3) Time spent. Third is the amount of time spent at the different
positions. One would expect these times to be indicative of
CFA/non-CFA in a similar manner to visit frequencies.

13For brevity, we will typically refer to pu ,v as just p, with the understanding
that it refers to the UV Pair in question.

14Recall from Section II-B1 that when Ei is a skip event, p′i is the position
of the video player immediately before the skip.
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Fig. 9. Plot of the fraction of local (repeat and direct) and non-local (backward and forward) transitions for each window size wv , averaged over all UV Pairs
for each position and video v, for each dataset. The fraction of non-local transitions is very low in each case. (a) ‘FMB’, (b) ‘NI’.

We will consider four prediction models based on these fac-
tors. Three of them are likelihood-based: Discrete time Positions
(DP), which incorporates the number of visits to each position;
Discrete time Transitions (DT), which models transitions be-
tween positions; and Continuous time Transitions (CT), which
factors in inter-arrival times between positions. For comparison,
we include a standard SVM predictor that uses position counts
as features. In practice, the major advantage of the likelihood-
based schemes over SVM is that its feature space is directly
interpretable, leading e.g., to content analytics. Each model will
be tested on each video separately, allowing us to compare re-
sults on a per-video basis in Section V.

B. Position-Based Modeling

Discrete Time Positions (DP). For the DP model, video po-
sitions are treated as independent events. Let f v ,c = [fi ]

v ,c ∈
[0, 1]N (wv ) be the probability distribution of visit frequency
across positions i ∈ Pv (wv ). This is estimated over the UV
Pairs in the training set Uv ,c

T as

fv,c
i = Ov,c

i

/ ∑

j

Ov,c
j , (1)

where Ov,c
i is the number of occurrences of pi over sequences

in Uv ,c
T . In other words, Ov,c

i =
∑

u∈Uv , c
T

Ov,c
u,i , where Ou,i =

∑
n I{ρn =i} is the number of times student u was at i.
We test the ability of this model to identify which class each

u ∈ Uv
E belongs to. For this purpose, we compute the likelihood

of observing p on video v to be in c, given f v ,c , as

L (p | f v ,c) = gv,c ·
∏

n

fv,c
ρn

. (2)

Then, the prediction c̃ ∈ {0, 1} of the class for p is determined
by application of the Maximum a Posteriori Probability (MAP)
decision rule. But recall that there is a bias towards c = 1 for
each course (see Fig. 1). As a result, we introduce a term bv ≥ 0
into MAP, which will be tuned through the cross validation
procedure described in Section V-A:

c̃ =

⎧
⎨

⎩

1 gv,1L
(
p | f v ,1

)
> gv,0L

(
p | f v ,0

)
+ bv

0 gv,1L
(
p | f v ,1

)
< gv,0L

(
p | f v ,0

)
+ bv

I{U≥gv , 0 } otherwise
,

(3)

where gv,c = |Uv ,c
T |/|Uv

T | is the estimated class bias for video
v, and U denotes a random number drawn from [0, 1].
Support Vector Machine (SM). Let Ov

T = [Ou,i ]
v
T be the user-

position matrix consisting of all u ∈ Uv
T , and let cv

T be the vector
of corresponding CFA scores. We fit M : Ov

T → cv
T as an SVM

[25] over the training set, and then test the algorithm by com-
paring cv

E to M (Ov
E ) for the users u ∈ Uv

E in the test set. We
use the standard linear kernel, with the standard regularization
parameter Cv tuned through cross validation.

C. Transition-Based Modeling

In modeling transitions between positions, we will only con-
sider one-step transitions. This is common in webpage click-
stream analysis (e.g., [21]), and will be useful here since the
state spaces we consider can be large, depending on wv .15

1) Aggregating Non-Local Transitions: The cohort estima-
tor for a Markov chain model uses the fraction of transitions
from state i to j in estimating the probability of transitioning
from i to j [26]. We found this model not appropriate here,
because the number of transitions between two non-local posi-
tions is rather sparse, implying that there is not enough data to
estimate these specific transitions.

To see this, we inspect the sequences pv ,c for varying wv . In
particular, for each position in video v, we first find the total
number of times each type of transition from Section IV-A3
occurs, aggregated across the UV pairs. Then, we sum these
totals over all positions, and find the fraction of each type of
transition. We repeat this for each wv ∈ {5, 10, . . . , 600} (i.e.,
through 10 min), and then average across the videos v for each
wv . Fig. 9 shows the result for each course, from which we make
two observations for local and non-local transitions: (i) Tradeoff
between local transition types: As wv increases, the percentage
of repeat transitions increases monotonically (from roughly 2%
to 60% in each course), while the percentage of direct transitions
decreases monotonically (from roughly 98% to 40% in each
course). This is to be expected, since each position is increasing
in size with wv . (ii) Infrequency of non-local transitions: The
majority of transitions are local. For example, the largest fraction
of backward transitions is just over 2% in ‘FMB’, occurring at
wv = 120.

15This may not be ideal because unlike sequences of webpages, learning
builds on itself. It is harder to estimate higher order transitions due to position-
specific data sparsity. We still see substantial benefit with a one-step model.
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As a result of the second observation, the models that follow
will aggregate all observed forward transitions to form a single,
uniform probability at each position, and likewise for backward
transitions. To this end, we define Ii,k = {1, . . . , i − 1} for k =
1; {i} for k = 2; {i + 1} for k = 3; and {i + 2, . . .} for k = 4
to be the set of states constituting a backward (k = 1), repeat
(k = 2), direct (k = 3), and forward (k = 4) transition at posi-
tion i.
Discrete Time Transitions (DT). In this model, we discretize
time, discounting the interarrival times. Let Fv ,c = [fi,k ]v ,c ∈
[0, 1]N (wv ),4 be the matrix of transition probabilities, where
fv,c

i,k is the probability that the next position will be in Ii,k

given the current is i. We also assume that the transitions are
homogeneous, i.e., independent of time n.

Considering the sequences of positions p across users u ∈
Uv ,c

T , we obtain the number transitions from i to k as

Ov,c
i,k =

∑

u∈Uv , c
T

∑

n

I{ρn =i, ρn + 1 ∈Ii , k }. (4)

From (4), we estimate fv,c
i,k = Ov,c

i,k /
∑

j Ov,c
i,j , and the likelihood

of p from user u ∈ Uv
E on video v is

L (p |Fv ,c) = fv,c
ρ1

·
∏

n

fv,c
ρn ,ρn + 1

, (5)

where fv,c
p1

is the distribution at the initial position ρ1 of p,
obtained from (1). The MAP decision rule for DT is the same
as in (3), except with (5) in place of (2).
Continuous Time Transitions (CT). This model incorporates
the interarrival times between transitions. Rather than com-
puting the time-varying transition probabilities, we instead
work with the transition rates [26]. To this end, we define
Qv ,c = [qi,k ]v ,c ∈ RN (wv ),4 as the transition rate matrix for the
model, where qi,k , k �= 2 represents the rate of departure from
position i and arrival at a position in Ii,k .

Let rv ,c = [ri ]
v ,c ∈ RN (wv ) be the vector of the total time

spent by Uv ,c
T in state i. These terms are estimated as

rv,c
i =

∑

u∈Uv , c
T

∑

n

I{ρn =i} · dn , (6)

where dn is the duration of event n in p (see Section II-B1). In
estimating the qi,k , we must also obtain the number of transitions
from i to k over users u ∈ Uv

T , i.e., the Ov,c
i,k from (4); with this,

the qv,c
i,k terms are estimated as

qv,c
i,k =

⎧
⎪⎨

⎪⎩

Ov,c
i,k /rv,c

i k �= 2

−
∑

k �=2

qv,c
i,k k = 2 . (7)

Finally, the likelihood of sequencep for u ∈ Ωv
E is computed via

L (p |Qv ,c) =
∏

i,k ;k �=2

(
qv,c
i,k

)oi , k

exp
(
−qv,c

i,k · Ti

)
, (8)

where oi,k =
∑

n I{
ρn =i, ρn + 1 ∈Iik

} , k �= 2 is the num-

ber of transitions from i to k for the sequence p, and
Ti =

∑
n I{ρn =i} · dn is the time spent by p in i. Once again,

the MAP decision rule is as in (3), except with (8) in place of (2).
We also considered another position-based model, Continu-

ous Time Positions (CP), which used the time spent at each

position in likelihood computation. We omit it because its
results were strictly lower than these three likelihood-based
models.

V. PREDICTION EVALUATION

In this section, we evaluate the performance of the models
described in Section IV. We pose the following questions:

1) How beneficial is it to include video-watching positions
and transitions for CFA prediction on individual videos?

2) How do the likelihood-based models compare against the
SVM-based model?

3) Is one of position or transition-based model clearly better
than the other, or would some combination be the best?

4) Is it beneficial to include position durations?
Skewed-Random (SR). To answer the first question, we will

consider an algorithm that does not make use of clickstream
data, to act as a baseline for evaluating the gain from incorpo-
rating video-watching behavior. SR finds the CFA bias gv,1 over
the training set Uv

T , and predicts c = 1 gv,1 of the time (similar
to the baseline used in [12]). Note that in our application of
CFA prediction for individual videos, more sophisticated base-
lines that would leverage similarities across users and/or quizzes
without behavioral data (e.g., collaborative filtering like in [18]
and [27]) are not applicable.

A. Procedure

Metrics. Let TP, FP, TN, and FN be the number of true
and false positives, and true and false negatives obtained by
a model on an evaluation set. The first metric we consider
is accuracy (Acc), i.e., (TP + TN) / (TP + FP + TN + FN).
Since the quizzes are biased towards CFA (see Fig. 3),
we found that unconstrained maximization of accuracy dur-
ing the tuning procedure (described below) led to high re-
call (rec), i.e., TP/ (TP + FN) but low precision (prec), i.e.,
TP/ (TP + FP). To avoid this, we will subject tuning to
the constraint that the chosen parameters have at least 25%
of the truly negative samples predicted negative, and like-
wise for the positives. To this end, the second metric we
consider is the standard (balanced) F1 score, obtained as
2 · (prec × rec) / (prec + rec) [25]. As the harmonic mean of
precision and recall, F1 is limited by the minimum of the two,
capturing the tradeoff between them that is induced by this
constraint.

Even a few percent improvement in these metrics can be a
substantial benefit for CFA prediction. To see this, we can take
an example of the first video in ‘FMB’, which is the earliest
point of application of these algorithms, and also the point at
which the dropoff before the next video is the highest. Assuming
that the total number of incorrect responses (roughly 1150)
stayed the same, then for every 1% improvement in prediction
accuracy, we could identify another 12 students who would
get the question incorrect. Further, if the dropoff rate (roughly
25%) were to stay constant among the incorrect responses, then
each 1% improvement we give the chance to detect three more
students who would otherwise drop off.
Training and testing. For each algorithm and each video, we
obtain the accuracy and F1 metrics over N evaluation iterations.
In each iteration, we use the following procedure:
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Fig. 10. Summary of the tuned parameters and quality metrics obtained across the videos for each course. bv applies to the likelihood-based algorithms, while
Cv is for SM. The avg and s.d. are taken first over the 10 evaluation sets for each video, and then over all the videos. (a) ‘FMB’, (b) ‘NI’.

Fig. 11. Boxplots of CFA prediction quality across both courses, considering accuracy and F1. Each datapoint is that measured on one of the videos considered.
Qualitatively, we see that (i) the likelihood-based algorithms (DP, DT, and CT) outperform SR for both metrics, and (ii) the SVM-based (SM) algorithm also
outperforms SR, but not as substantially. (a) ‘FMB’, accuracy, (b) ‘FMB’, F1, (c) ‘NI’, accuracy, (d) ‘NI’, F1.

1) Divide the elements of Uv into K disjoint folds
Uv

1 ,Uv
2 , . . . ,Uv

K . In doing so, randomly allocate sam-
ples of CFA and non-CFA to folds, ensuring that the
number of class instances is equal across folds (e.g.,
|Uv ,c

k | = |Uv ,c
l | ∀k, l).

2) Set Uv
E = Uv

K and Uv
T = Uv \ Uv

K .
3) Tune the algorithm parameters wv and bv (for likelihood-

based) or Cv (for SVM) over the training set Uv
T , through

the parameter tuning procedure described below.
4) With the tuned parameters, compute the features for each

algorithm over Uv
T , and evaluate the fitted models on Uv

E .
The obtained metrics are averaged over the N iterations. In

our evaluation, we set N = 10 and K = 5.
Parameter tuning. Each algorithm has two parameters that
must be tuned. Let W,B, and C be sets of potential values for
the video width wv ∈ W , the likelihood bias bv ∈ B, and the
regularization control Cv ∈ C.16 To tune these parameters for an
algorithm, we apply a standard Cross-Validation (CV) procedure
over the training set [25], which reduces to the following. First,
for each CV iteration k ∈ {1, . . . , K − 1} :

1) Set Uv
C = Uv

k and Uv
R = Uv

T \ Uv
k .

2) For each pair (wv , bv ) ∈ W × B or (wv ,Cv ) ∈ W × C,
find the result from training on Uv

R and testing on Uv
C .

Then, average the accuracy values for each pair of parameters
over the K − 1 CV iterations. The pair which yields the highest
average accuracy is selected, subject to the constraint described
with the metrics above.

16We set W = {5, 10, . . . , 20, 30, . . . , 600},B = {0, 2−60 , 2−58 , . . . ,
1}, and C = {10−7 , 10−6 .5 , . . . , 107}. For each parameter, these choices en-
sured that most selections across videos did not lie on one of the endpoints.

B. Results and Discussion

Since there is a sharp decline in quiz submissions over time,
we only consider those for which there are at least 100 samples
of both CFA and non-CFA instances, so that there at least 20
samples from each group in each of the K = 5 folds. We eval-
uate on the 24 videos for ‘FMB’ and the 32 for ‘NI’ that satisfy
this criteria, which is a total of 56.

1) Overview of Results: Summary information on the tuned
wv and bv (or Cv ) parameters, as well as the two performance
metrics—Accuracy (Acc) and F1—can be found for each al-
gorithm and each course in Fig. 10. Here, we give the average
(avg) and standard deviation (s.d.) of these values, taken across
evaluation iterations for each video, and then across videos.
The distribution of the performance values are plotted for each
course in Fig. 11; in each box, the performance on one video is
one data point.

From Fig. 11, we can see immediately that (i) the likelihood-
based (DP, DT, and CT) algorithms perform substantially better
than SR overall, and (ii) the SVM-based (SM) algorithm out-
performs SR overall, but not as much as do the likelihood-based
methods. Also, the improvement is higher for accuracy than it is
for F1, which is expected since the tuning procedure monitors
accuracy. In order to test for significance in the performance
differences between each pair of models, we run a WRS test (as
in Section II-B) for the null hypothesis that there is no differ-
ence between the distributions in Fig. 11. The resulting p-values
(p) from these tests are tabulated in Fig. 12, and verify our
qualitative assessment from the boxplots.

2) Comparing Individual Algorithms: We now answer the
specific questions posed at the beginning of Section V.
1: Benefit of clickstream data. We quantify how beneficial
clickstream data can be for prediction. To do this, we compare
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Fig. 12. p-values (p) from applying pairwise WRS tests to the boxplots in Fig. 11. (a) ‘FMB’, accuracy, (b) ‘FMB’, F1, (c) ‘NI’, accuracy, (d) ‘NI’, F1.

the DP algorithm (which, from Figs. 10 and 11, appears to have
the highest overall quality) to the SR baseline.

Considering accuracy first, refer to Fig. 11(a)&(c). DP is
clearly shifted to the right relative to SR: for ‘FMB’, the shift
in the mean of DP relative to SR is roughly 12%, and for ‘NI’,
the improvement is roughly 11%. From Fig. 12, we see that this
difference is also highly significant in both courses (p < 0.01).
For F1, refer to Fig. 11(b)&(d): again, we see that DP is shifted to
the right relative to SR overall, though not quite as substantially.
The increase in means of roughly 13% for ‘FMB’ and 8% for
‘NI’ are both significant (p < 0.02 from Fig. 12).

For further analysis of the differences, in Fig. 13 we show the
comparison between DP and SR across the individual videos.
The difference in the metrics obtained are shown for each video
(specifically, DP minus SR). For accuracy in (a&c), we see that
DP outperforms SR (i.e., has a positive difference) for 98% of
the videos across both datasets (all except one of the 56). For
F1 in (b&d), this drops to 88% (all except seven).

Note further that in Fig. 11(b), the magnitudes on negative
videos are substantially smaller than the magnitudes on the
highest positive cases. In (d), however, two of the videos (3 and
27) have very high drops. One would expect that these would be
instances where SR already had high performance due to a high
bias (skew) in favor of either CFA or non-CFA (e.g., a video
with an easy or a hard quiz). Surprisingly, the opposite is true:
the CFA biases are close to 0.5 (roughly 0.46 in both cases), and
there are videos with smaller and larger biases for which DP
outperforms SR substantially.
2: Likelihood vs. SVM. For this, we compare DP with SM. In
Fig. 11, we see that DP is shifted to the right for each course and
metric. While the average improvements in accuracy of roughly
4% in both courses are not statistically significant (p > 0.1),
the improvements in F1 of 11% for ‘FMB’ and 4% for ‘NI’ are
significant (p < 0.1).

In Fig. 13, we plot the difference between DP and SM for
individual videos (as is done for DP and SR). The comparison
here is consistent with the observations from the boxplots: the
F1 improves in 71% of the videos in (b&d), while the accuracy
only improves in 66% of the cases in (a&c). Note also that,
contrary to the comparison between DP and SR above, for each
of the metrics and datasets, the videos in which DP has the
highest gain over SM show significantly larger improvements
than those in which SM shows the highest gains over DP. In
other words, the improvement is less variable.

So, DP does outperform SM, but not as substantially as it
outperforms SR. In fact, SM has a statistically significant gain
over the baseline SR in terms of accuracy (p < 0.1 in Fig. 12).
3: Positions vs. transitions. For this, we compare DP to DT. In
terms of accuracy, in Fig. 11(a)&(c) we see that the algorithms
are comparable for both courses. As for F1 in Fig. 11(b)&(d), DP
is modestly better on average, especially for ‘FMB’ where it has
an improvement of roughly 5%. DT has a higher range in each
case (excluding outliers), with generally lower performance than
DP below quartile Q2 (e.g., in F1 for ‘FMB’) but, in accuracy
for ‘FMB’, also higher above Q2. When considering individual
videos,17 DT and DP each perform better on roughly half of
the videos in each course, with the exception of accuracy in
‘FMB’ for which DT has higher quality the majority of the time.
Overall, the differences between DT and DP are not statistically
significant for either course or metric (p > 0.1 in all cases).
4: Discrete vs. continuous. Finally, we compare DT to CT. In
Fig. 11, first consider accuracy. For ‘FMB’, DT is shifted to
the right by roughly 3% relative to CT, whereas for ‘NI’, the
algorithms are comparable. As to the F1-score, while DT and CT
are comparable overall, the distribution for CT is slightly shifted
to the right for both courses. Considering individual videos, DT
outperforms CT on more videos for each dataset and metric. In
particular, in Fig. 13(a)&(c), it has higher accuracy in 71% of
the cases, and higher F1 in 61% of the cases. Still, overall, the
differences are not statistically significant for either course or
metric (p > 0.1 in all cases).

3) Key Messages: Many aspects of position-based video be-
havior are useful for CFA prediction: the frequency of visits to
each position (DP and SM), the frequency of transitions be-
tween positions (DT), and transitions incorporating holding
times (CT). Each of these algorithms obtained higher qual-
ity than the SR baseline on both metrics and datasets tested,
with statistically significant gains in most cases. Overall, the
likelihood-based algorithms obtained the highest quality (with
a slight edge given to DP), while the SVM-based algorithm
forms a middle tier, and the SR baseline at the lowest.

The likelihood-based algorithms employ feature spaces that
are representing user behavior directly; namely, positions visited
and transitions. A significant advantage of this is that it leads
to natural interpretations in terms of learner actions, which can
be related to CFA scores for e.g., content analytics. Though the

17We omit bar graphs over videos as in Fig. 13 for brevity.
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Fig. 13. Difference in quality (in percent) between DP and SR (i.e., DP minus SR) and between DP and SM (DP minus SM) across individual videos, for each
course and each metric. A positive bar indicates that DP performed better than the algorithm, while a negative bar indicates it performed worse. DP outperforms
both algorithms in the majority of cases, but it outperforms SR in more cases than it does SM. (a) ‘FMB’, Accuracy, (b) ‘FMB’, F1, (c) ‘NI’, Accuracy,
(d) ‘NI’, F1.

SVM-based model we tested is more complicated, and hence
not as easily interpretable, it was still seen to obtain lower qual-
ity results than did the likelihood-based algorithms, i.e., the
latter has better interpretability and better quality. Still, we be-
lieve that higher quality predictions could be obtained by pass-
ing these features through algorithms with higher complexity
(e.g., kernel-based SVM, rather than linear) to learn over higher
dimensional spaces. The downside is that this would eliminate
interpretability entirely, which is important for this application.
Related to this, an interesting avenue of future work would be
to use the position and transition matrices inferred over the CFA
classes to generate recommendations guiding learner behavior
to different locations in real time.

Also, in our evaluation, CFA prediction was done on a per-
video basis. This underscores the applicability of these models to
situations where there is not a lot of information across multiple
lectures, e.g., for quick detection early in a course, or for short
courses that have few videos to start with.

VI. RELATED WORK

We discuss recent, key works on MOOCs, student video-
watching analysis, and student performance prediction.
MOOC studies. With the proliferation of MOOCs in recent
years, there have been a number of analytical studies on these
platforms. Some have focused on a more general analysis of all
learning modes, e.g., [7] and [20] studied learner engagement
variation over time and across courses. Others have focused on
specific modes, e.g., in terms of forums, [5] analyzed the decline
in participation over 73 courses. There has also been work on
identifying taxonomies of student motivation for enrolling in
MOOCs, through e.g., designing and administering surveys [9]

and interviews [8], and on studying how intention is predictive of
course behavior. Our work is fundamentally different from these
works in that it (i) studies low level video-watching behavioral
details, and (ii) explores the association between behavior with
two modes: video and assessment.
Video-watching analysis. Most existing works on learner
video-watching behavior [10], [12], [13], [28] have focused on
session-level user characteristics (e.g., re-watching sessions) or
aggregate quantities (e.g., number and duration of pauses). The
works of [12] and [13] identified ways in which these types of
quantities are correlated with student performance on quizzes.
Our work is fundamentally different from these because it rep-
resents behavior as sequences. The work in [11] is perhaps the
most similar to ours in this regard, since it is also concerned
with recurring patterns in clickstream sequences for MOOC
users. The authors define a mapping of subsequences of events
to predefined behavioral actions (e.g., skipping, slow watching)
and perform approximate string search to locate these behaviors
in clickstreams. Our work on motif identification differs from
this in two important ways: (i) rather than assuming a prede-
fined set of actions, we extract the recurring sequences directly
using motif identification algorithms, and (ii) we are concerned
with mapping motifs to assessment performance, in contrast to
engagement.
Grade prediction. Researchers have developed predictors for
how students will perform on assessments (e.g., [12], [17], [18],
[27], [29]) and for what their final grades will be (e.g., [14],
[30], [31]) in courses, some with application to traditional ed-
ucation settings and others for distance learning. Several tech-
niques have been applied for this purpose, such as collaborative
filtering algorithms [18], [27], support vector machines [12],
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[31], and probabilistic graphical models [29], [30]. Recently,
[17] developed SPARFA-Trace, which traces a learner’s knowl-
edge through the sequence of material accessed and questions
answered. [14] proposed an algorithm to predict the final grade
of each student after each assessment in a class based on the past
history of students’ performance. Compared with these works,
ours is unique in that (i) it focuses on relating click-level data—
video-watching behavior—to assessment performance, and
(ii) it focuses on prediction within single videos for earliest
detection. In this regard, [12] studied the predictive capabil-
ity of session-level video-watching quantities computed from
clickstream data (e.g., the fraction of the video watched and the
number of rewinds), considering multiple users and videos in
the course simultaneously. Focusing on individual videos, our
models are instead position-dependent, and the improvements
in accuracy relative to the baseline that we obtain are strictly
higher than those cited here (3% increase to the same baseline).
Overall, we emphasize that the models used in each of these
other works are not readily applicable to our setting, because
we focus on the case of individual videos where similarities
among users/quizzes is not available.
Webpage clickstream analysis. Webpage clickstream analy-
sis [21], [32], [33] remains an active area of research. Video-
watching clickstreams are fundamentally different from these
applications, which are concerned with transitions between web-
pages rather than behavior within a single window.

VII. CONCLUSION AND EXTENSIONS

In this work, we have studied student video-watching behav-
ior, quiz performance, and their association in MOOC. In doing
so, we have formalized two frameworks for representing user
clickstreams: one based on sequences of events with discretized
lengths, and one based on sequences of positions visited. With
datasets from two MOOCs encoded in these frameworks, we
have accomplished two main goals: (i) we have mined the se-
quences to identify recurring motifs in user behavior, and dis-
covered that some of these characteristics are significantly as-
sociated with CFA and non-CFA quiz submissions; and (ii) we
have proposed models for relating user clickstreams to knowl-
edge gained, and showed how multiple aspects of this behavior
can improve CFA prediction quality on individual videos.

The models we have proposed here can be extended for fu-
ture work in several ways. For one, the event-based sequence
representation in Section II can be generalized to optimize the
selection of quantiles used to divide the event lengths. Also, the
position-based models in Section IV can be extended to consider
higher-order transitions and durations under a non-exponential
assumption, to see whether the prediction quality in Section V
can be improved further.

More generally, recall that students can have different moti-
vations for taking MOOCs in the first place. In this work, we
have limited our scope to those students who are interested in
answering questions, which leaves an important future step to
account for differing motivations in the behavioral analysis. The
most objective way for this to be done is perhaps to release a
questionnaire at the beginning of the course asking students to
indicate their intentions for enrolling. Then, behavioral charac-
teristics could be identified for each group separately, and the
results compared.

Related to this is the fact that we have focused on video-
watching behavior and in-video quiz performance in this work.
In accounting for different motivations, the definition of per-
formance can be adjusted depending on what the student hopes
to achieve, like high quiz scores, a broadened social network,
or some combination of different metrics. Similarly, behaviors
from different learning modes can be incorporated; in MOOCs,
this includes forum discussions, and in settings beyond MOOCs,
it can include behavior exhibited on any type of content inte-
grated into the course.

Finally, we remark that the true test of the methods we have
developed here is their impact on instructor interventions. We
have shown that certain video-watching motifs are correlated
with quiz scores, and quantified the quality of behavior-based
CFA prediction, but a larger question still remains: How will an
instructor make use of the motifs and predictions? To investigate
this, we are currently working with the learning technology
company Zoomi Inc.18 to integrate these algorithms into an
instructor dashboard that is being deployed to various learning
scenarios. With these analytics in the hands of course instructors,
we will determine their effects by monitoring overall changes
in student performance based on the interventions that are made
as a result.
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[30] E. Osmanbegović and M. Suljić, “Data mining approach for predict-
ing student performance,” in J. Econom. Rev., vol. 10, no. 1, pp. 3–12,
2012.
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