
Predicting the Timing and Quality of
Responses in Online Discussion Forums
Patrick Hansen∗, Richard Junior Bustamante∗, Tsung-Yen Yang†, Elizabeth Tenorio‡,

Christopher G. Brinton§, Mung Chiang§, and Andrew S. Lan¶
∗The College of New Jersey, †Princeton University, ‡Zoomi Inc.,
§Purdue University, ¶University of Massachusetts Amherst

∗{hansenp2,sancher6}@tcnj.edu, †ty3@princeton.edu, ‡elizabeth.tenorio@zoomi.ai,
§{cgb,chiang}@purdue.edu, ¶andrew.lan@cs.umass.edu

Abstract—We consider the problem of jointly predicting the
quality and timing of responses to questions asked in online
discussion forums. While prior work has focused on identifying
users most likely to answer and/or to provide the highest quality
answers to a question, the promptness of the response is also a
key factor of user satisfaction. To address this, we propose point
process and neural network-based algorithms for three prediction
tasks regarding a user’s response to a question: whether the user
will answer, the net votes that will be received on the answer,
and the time that will elapse before the answer. These algorithms
learn over a set of 20 features we define for each pair of user
and question that quantify both topical and structural aspects
of the forums, including discussion post similarities and social
centrality measures. Through evaluation on a Stack Overflow
dataset consisting of 20,000 question threads, we find that our
method outperforms baselines on each prediction task by more
than 20%. We also find that the importance of the features varies
depending on the task and the amount of historical data available
for inference. At the end, we design a question recommendation
system that incorporates these predictions to jointly optimize
response quality and timing in forums subject to user constraints.

I. INTRODUCTION

Community Question Answering (CQA) services for knowl-
edge dissemination and information seeking have exploded
in popularity over the past decade. Platforms like Quora,
Stack Overflow, and Yahoo! Answers have provided venues
for Internet users to crowdsource answers to questions that
they may not have otherwise found through general purpose
web search. The rise of CQA has come with its share of
challenges too, particularly around the timing and quality of
user-generated answers; askers may have to wait up to several
days until the “best” answer is determined [1], [2].

To address this issue, researchers have proposed algorithms
for question routing, i.e., recommending questions newly
posted on discussion forum sites to eligible answerers [2]–
[4]. A major focus of such work has been identifying users
most likely to answer a question [3] and/or to provide the
highest quality responses [2], which in turn enables platforms
to make answerer recommendations by e.g., personalizing user
news feeds based on those predicted to produce desirable
answers [4]. These prediction algorithms learn their parameters
over data collected and stored on CQA sites, such as net
votes received on posts, topics tagged in questions, and user

expertise ratings [5]. A common metric these algorithms seek
to optimize is response quality, typically quantified by either
the net votes an answer receives or as a binary measure of
whether it will be marked by the asker as the best answer [3].

In addition to response quality, there is another important di-
mension of the question recommendation problem that impacts
user satisfaction: the time delay of answers provided [1], [6].
Ideally, these two (possibly competing) objectives would be
optimized in a recommendation system concurrently, so that a
user can receive an acceptable answer to their question without
having to wait significantly longer for a marginally better
response, e.g., several more hours for an answerer expected
to accrue just one vote higher [4]. Motivated by this, we
ask: How can both the timing and quality of a user’s answer
to a question be predicted simultaneously in advance? The
design of accurate predictors for these attributes in turn would
enable the development of more effective question-answerer
allocation systems [2], potentially taking into account several
factors such as each asker’s objective, the urgency of the
question, and the load imposed on answerers [4].

To address this research question, in this paper, we develop
novel point process and neural network-based algorithms that
predict response quality and timing by learning over a set of
20 features describing user-question pairs in CQA discussion
forums. These features include both topical and structural
aspects of user discussions, and give insight into the Social
Learning Networks (SLNs) [7] that emerge on CQA sites. In
evaluating our method on a real-world dataset, we also ana-
lyze the importance of each feature, and investigate whether
tradeoffs exist between answerer response time and quality.

A. Related Work

Online discussion forums have received a plethora of re-
search interest in the past several years. Many such works have
focused on information retrieval tasks, including textual and
semantic analysis of discussion threads [8], [9], identification
of authoritative users by activity levels [10] and trends in
link formation [5], inference of the social graphs connecting
users based on thread discussion co-occurrences [1], [4], and
analysis of the efficiency of communication among users [4],
[11]. Our work is instead focused on prediction tasks for
forums; in particular, predicting user response time and quality.



Fig. 1: Block diagram summary of the discussion forum question recommendation methodology developed in this paper. Highlighted
components are those given particular emphasis. The shading pattern on the predictors is reused throughout the evaluation in Sec. IV.

In this regard, some recent works have studied prediction
tasks for discussion forums. A few algorithms have been
developed to predict user interactions, including whether a
user will upvote/downvote an answer [12] and the forma-
tion/strength of links between between users [6], [13]. Our
methodology defines some similar topic-based and structural
features to those proposed in [6], [13], including user-to-user
discussion similarities and resource allocation indexes, but we
instead consider predictions for the purpose of question rec-
ommendation. Regarding this specific objective, recent works
have built predictors focusing on two main tasks for question
recommendation: determining which users will answer newly
posted questions [3], [14], and estimating the quality of
response that a user will provide to a question [2], [15], [16].

Similar to [2], [16], our work considers both of these tasks
together, i.e., whether a user will answer and the quality of
the answer. In particular, [16] proposed a set of algorithms
that account for coupling between questions/answers, temporal
dynamics of features, and non-linearities in predicting votes,
while [2] proposed a generative tagword topic model to infer
user interest and expertise on questions. While our methodol-
ogy accounts for topical features and non-linear relationships
with target variables (through neural networks), it addition-
ally considers the structural aspects of the inferred social
network, which we find are important features for question
routing prediction tasks. Further different from these works,
our method simultaneously predicts the timing of responses,
which is acknowledged as an important objective in [6], [15].
For this prediction, we propose a point process model that
learns from the same set of features as the net vote predictor.

B. Summary of Methodology and Contributions

Figure 1 summarizes the key components of the methodol-
ogy developed in this paper. From the data collected on users,
questions, and answers through the posts made in an online
discussion forum (Sec. III-A), a set of prediction features is
constructed (Sec. II-B). In particular, we define four groups
of features for each pair of user and question: (i) user and
(ii) question features, which describe the answering tenden-
cies of the user and attributes of the question, respectively,
(iii) user-question features, which quantify the topical match
between the user and the question, and (iv) social features,

which measure centralities and similarities between users. In
doing so, we develop graph models to quantify the structure
of interactions between forum users, and topic models to
describe the discussions across forum posts, which are both
key components of the Social Learning Network (SLN) [4].

The next component of our methodology is prediction
algorithms that learn over sets of these features for user-
question pairs (Sec. II-A). We consider three prediction tasks
for the question recommendation problem: (i) who will answer
a question, (ii) the timing of a user’s response, and (iii) the
quality of response a user will provide. A major challenge
that our algorithms must overcome is modeling under sparsity,
since the vast majority of users do not answer a given question
[16]. For (ii) and (iii), we develop novel point process and
neural network algorithms that quantify the time-varying prob-
ability of a user posting in a thread through generalized, non-
linear rate functions. For (i), we resort to a logistic regression
classifier to prevent overfitting on the user-question matrix.

To evaluate the performance of our predictors and assess
the impact of our feature set, we perform several experiments
on a real world-dataset of 20,000 question threads from Stack
Overflow (Sec. IV). Our key findings are as follows:
• We show that our predictors obtain substantial improve-

ments of 22-23% over baselines on each prediction task.
• We observe that user and question features vary in

importance significantly between prediction tasks, while
user-question and social features are more consistent.

• We find that the user, question, and user-question feature
groups can each be the most important depending on the
prediction task and amount of historical data available.

• We observe, rather surprisingly, that the timing and
quality of user responses are uncorrelated quantities.

The final component of our methodology is the question
routing algorithm that recommends newly posted questions
to eligible answerers (Sec. V). To do this, we formulate a
joint optimization of predicted response quality and timing
subject to constraints on user load over a recent time window.
We also discuss considerations for future work regarding the
integration of this methodology into online forum platforms.

II. FORUM PREDICTION METHODOLOGY

In this section, we formalize our prediction models. We first
present our point process and neural network learning algo-



rithms for response timing and quality (Sec. II-A), followed
by the learning features (Sec. II-B) used in the predictors.

A. Response Prediction Algorithms

An online (CQA) discussion forum is generally comprised
of a series of threads, with each thread corresponding to one
user-generated question as well as answers to that question
[1]. In this paper, we let u ∈ U denote user u in the set of
users U , and q ∈ Q denote question q in the set of questions
Q comprising the dataset under consideration. pqn will refer
to the nth post made in the thread for question q, with pq0
corresponding to the question itself and pq1, . . . being the
answers, collectively forming thread q. We say that each post
p contains text written by a creator u(p) at timestamp t(p),
and received v(p) net votes (up-votes minus down-votes).

As discussed in Sec. I, for each question q, we are interested
in predicting three attributes of each user u: (i) whether u will
answer q, (ii) the net votes that u’s answer to q will receive,
and (iii) the time that will elapse before u’s answer of q. We
denote these quantities as (i) au,q ∈ {0, 1}, a binary indicator
with 1 corresponding to the user answering, (ii) vu,q ∈ Z,
a positive or negative integer value, and (iii) ru,q ∈ R+, a
positive real number, for each user-question pair (u, q).1 If
au,q = 0, then vu,q and ru,q do not exist, though they may
still be predicted for question recommendation. The predicted
versions of these variables will be denoted âu,q , v̂u,q , and r̂u,q .

Our prediction algorithms are as follows:
1) Predicting au,q: We model the probability of a user u

posting an answer to question q according to

P (au,q = 1 | xu,q) =
1

1 + e−x
T
u,qβ

,

i.e., a logistic regression classifier. Here, xu,q ∈ Rd is our
vector of engineered features for the user-question pair (u, q),
which we will detail in Sec. II-B, and β ∈ Rd is the vector
of regression coefficients.

We choose a linear model on our features for au,q for a
few reasons. First, it will allow us to establish the general
predictive capability of the features xu,q themselves in Sec.
IV, i.e., without more complex input-output mappings as is
done for vu,q and ru,q below. Second, the sparsity of au,q in
discussion forums in general – with most users answering few
questions [1], [4], [6] – renders nonlinear techniques prone to
overfitting for this prediction task [16]. We will explore the
sparsity of our own dataset in Sec. III.

2) Predicting vu,q: We propose a fully-connected (and pos-
sibly deep) neural network for net vote prediction. Specifically,
we model vu,q according to

h1 = σ(W T
1 xu,q + b1)

h2 = σ(W T
2 h1 + b2)

... =
...

vu,q = σ(wT
LhL + bL), (1)

1It is possible (though rare) for a user to submit multiple answers to the
same question. We will address this in our data processing in Sec. III.

where xu,q is the vector of input features, and the parameters
are weight matricesW 1, ...,WL−1, the weight vectorwL, the
bias vectors b1, ..., bL−1, and the bias scalar bL. L controls
the number of hidden layers h1, ...,hL in the model, while
we allow the number of hidden units (i.e., dimension of each
h1, ...,hL) to vary across layers. σ denotes a nonlinearity
function, e.g., tanh or rectified linear units (ReLU).

3) Predicting ru,q: We develop a point process model [17]
to model a user’s response time in a question thread. The
(latent) rate function of this process for each (u, q) dictates
the time-varying probability that u will post an answer to q at
a particular point in time. We model this rate, λu,q(t), as an
initial excitation that decays exponentially over time, i.e.,

λu,q(t) = µu,qe
−ωu,q(t−t(pq0)),

where t denotes the current time and t(pq0) is the timestamp
when question q was posted, i.e., if u responds at t then the
observed response time is ru,q = t− t(pq0). µu,q denotes the
initial excitation of q on u, which characterizes the strength of
influence the question has on the user, while ωu,q > 0 denotes
the decay rate on the influence of the question post. We further
model the initial excitation and decay rate as

µu,q = fΘ(xu,q), ωu,q = gΘ(xu,q),

where fΘ(·) denotes a function with parameter set Θ, and
xu,q is the vector of input features for this (u, q) pair.

As a generalization over prior methods that restrict fΘ(·) to
be a linear function [18], we use two separate (non-linear) fully
connected neural networks for fΘ(·) and gΘ(·). Θ contains
all the weights and biases from the two neural networks f
and g, as detailed in (1). Additionally, our choice of setting
the decay rate ω to be a function of xu,q – and thus varying
across user-question pairs – is significantly different from the
setting in [18] where ω is set to a constant value.

Now, for each question thread q comprised of posts
pq0, pq1, ..., the log likelihood of q is given by

Lq =
∑
n:n>0

log λu(pqn),q(t(pqn))−
∑
u∈U

∫ T

t(pq0)

λu,q(τ)dτ

=
∑
n:n>0

log fΘ(xu(pqn),q)−
∑
n:n>0

gΘ(xu,q)(t(pqn)− t(pq0))

−
∑
u∈U

fΘ(xu,q)
1− e−gΘ(xu,q)(T−t(pq0))

gΘ(xu,q)
,

where T = maxq,n t(pqn) denotes the timestamp of the last
answer in the dataset (assuming that the first question is posted
at t = 0). Using this expression, the total log-likelihood of a
particular set of questions Ω ⊆ Q can then be computed as∑
q∈Ω Lq . Since this total log-likelihood is a smooth function

of the neural network parameters Θ, we can estimate the
parameters using gradient descent algorithms.2

2We use the standard Adam optimizer in TensorFlow https://www.
tensorflow.org/.

https://www.tensorflow.org/
https://www.tensorflow.org/


Once we have obtained the estimates of the parameters Θ,
denoted Θ̂, we can calculate the expected time at which user
u will respond to question q as

E[tu,q] =

∫ T

t(pq0)

τP (response between τ and τ + dτ)

=

∫ T

t(pq0)

τλu,q(τ)dτ

= µ̂u,q

∫ T−t(pq0)

0

τe−ω̂u,qτdτ

=
µ̂u,q
ω̂2
u,q

(
1− e−ω̂u,q(T−t(pq0))(1 + ω̂u,q(T − t(pq0)))

)
,

where µ̂u,q = fΘ̂(xu,q) and ω̂u,q = gΘ̂(xu,q). This expecta-
tion constitutes our prediction of when the user will respond
to the question, from which we can subtract the time t(pq0)
when the question was created to obtain our prediction r̂u,q
of the response time ru,q:

r̂u,q = E[tu,q]− t(pq0)

B. Feature Engineering for xu,q
In this section, we will develop four groups of features that

constitute xu,q . In order to do so, we first detail our methods
for inferring post topics and constructing the Social Learning
Network (SLN) graph structure of the forums.
Topic models. We divide the text comprising each post p into
two groups: words x(p) and code c(p) (using the fact that
code on forums is delimited by specific HTML tags). A topic
distribution d(p) = (d1(p), ..., dK(p)) is associated with each
p based on analysis of x(p), where K is the number of topics,
di(p) ∈ (0, 1) is the proportion of p constituted by topic i,
and

∑
i di(p) = 1. Similar to [4], [6], we infer d(p) through

Latent Dirichlet Allocation (LDA), which extracts post-topic
and topic-word distributions across a set of forum questions
when each post p comprising the set of questions is treated
as a separate document.3 Moving forward, we will let Ω ⊆ Q
denote a general partition of the questions in the dataset for
feature computation and model training; the methods used for
cross validation will be described in Sec. IV.
Graph models. We consider two graphs of users for the SLN.
First is the question-answer graph GQA, where a link is created
between users u and v if u creates a question and v posts an
answer, or vice versa. Formally, let wu,v = 1{∃q ∈ Ω, i >
0 : u(pq0) = u, u(pq,i) = v || u(pq0) = v, u(pq,i) = u},
where 1 is the indicator function; then [wu,v] is the binary
adjacency matrix of GQA. Second is a denser graph GD where
answerers in the same thread are also connected to each other,
with “density” reflecting the proportion of node pairs that are
connected [6]. In this case, wu,v = 1{∃q ∈ Ω, i ≥ 0, j ≥ 0 :
u(pq,i) = u, u(pq,j) = v} is the adjacency matrix. Note that
since links are bidirectional, both GQA and GD are symmetric.

3We use the Latent Dirichlet Allocation function in Python’s Gensim
package.

We now define 20 user, question, user-question, and social
features for each (u, q) pair to form the feature vector xu,q:

User features. These aim to quantify user u’s observed
behavior in answering questions, including overall activity,
quality and speed of responses, and topics of interest. In
particular, based on u, the following features are computed:

(i) Answers provided au: The number of answers given by u,
i.e., au =

∑
q∈Ω,i>0 1{u(pq,i) = u}.

(ii) Answer ratio ou: The smoothed ratio of answers generated
to questions asked by u, i.e., ou = (

∑
q∈Ω,i>0 1{u(pq,i) =

u})/(1 +
∑
q∈Ω,i=0 1{u(pq,i) = u}).

(iii) Net answer votes vu: The net votes on answers given by
u, i.e., vu =

∑
q∈Ω,i>0 (1{u(pq,i) = u} · v(pq,i)).

(iv) Median response time ru: A measure of the average time
before u responds to a question, i.e., ru = median{t(pq,i) −
t(pq0) : q ∈ Ω, i > 0, u(pq,i) = u}.4

(v) Topics answered du: The average distribution of topics
answered by u, i.e., du = mean{d(pq,i) : q ∈ Ω, i >
0, u(pq,i) = u} where the average is taken element-wise.

Question features. This group of features aims to quantify
attributes of the question q that may attract responses from
particular users, including popularity, length, and constituent
topics. In particular, the following are computed for q:

(vi) Net question votes vq: The net votes on q, i.e., v(pq0).

(vii) Question word length xq: The length of words written in
q in characters, i.e., |x(pq0)|.
(viii) Question code length cq: The length of code written in
q in characters, i.e., |c(pq0)|.
(ix) Topics asked dq: The topic distribution d(pq0) of q.

User-question features. These quantify potential relationships
between user u and question q, such as similarities in topics
discussed and the quality of answers u provided to related
questions. In particular, the following are computed:

(x) User-question topic similarity su,q: The total variation
distance between the user and question topic distributions
expressed as a similarity, i.e., su,q = 1− 1

2‖du − dq‖1.

(xi) Topic-weighted questions answered gu,q: Total topic simi-
larity between the question and questions previously answered
by u, i.e., gu,q =

∑
r∈Ω,r 6=q (1{∃i > 0 : u(pr,i) = u} · sr,q)

where sr,q = 1− 1
2‖dq − dr‖1.

(xii) Topic-weighted answer votes eu,q: Net votes on answers
given by u weighted by the question-question similarity, i.e.,
vu,q =

∑
r∈Ω,r 6=q,i>0 (1{u(pr,i) = u} · v(pr,i) · sr,q).

Social features. We also consider features of the inferred
SLN topologies that may give insight into user u’s (a) overall
question answering tendency, such as centrality measures, and
(b) potential for answering the particular question q, such as
thread co-participation and discussion topic similarity between
u and the creator v = u(pq0) of question q. In particular, we
compute the following:

4The median is taken here to prevent the effect of outliers in timing data.



(a) GQA (b) GD

Fig. 2: Visualization of the (a) question-answer and (b) denser graph
models of the SLNs in our dataset. Each has roughly 14K user nodes.
Higher degree users are plotted closer to the center.

(xiii) User-user topic similarity su,v: The similarity between
topics discussed by the user and the user who asked the
question, i.e., su,v = 1− 1

2‖du − dv‖1.

(xiv) Thread co-occurrence hu,v: The number of threads that
both u and v contribute to as either questions or answers, i.e.,
hu,v =

∑
q∈Ω 1{∃m : u(pq,m) = u,∃n : u(pq,n) = v}.

(xv) QA closeness centrality lQAu : The closeness of u mea-
sured over the social graph GQA, i.e., lu = (|U | −
1)/
∑
v 6=u zu,v(GQA) where zu,v is the shortest path distance

between u and v.

(xvi) QA betweenness centrality bQAu : The betweenness of u
measured on GQA, i.e., bu =

∑
s 6=t6=u σs,t,u(GQA)/σs,t(GQA)

where σs,t is the number of shortest paths between s and t
and σs,t,u is the number of these paths that u lies upon.

(xvii) QA resource allocation index ReQAu,v : The resource
allocation index of u and v in the social graph GQA, i.e.,
ReQAu,v =

∑
n∈Γu∩Γv

1/|Γn| where Γu = {t : wu,t = 1} is the
set of u’s neighbors. Among the topology features proposed
for link prediction in [6], this was found most predictive.5

(xviii) Denser closeness centrality lDu : The closeness centrality
of u measured over the social graph GD instead.

(xix) Denser betweenness centrality bQAu : The betweenness
centrality of u measured on GD instead.

(xx) Denser resource allocation index ReDu,v: The resource
allocation index of u and v measured on GD instead.

These 20 features constitute vector xu,q . Since two of the
20 defined features are topic distributions of length K, the
resulting dimension of xu,q is 18 + 2K. In Sec. IV, we will
analyze the importance of each feature to each prediction task.

III. DATASET AND DESCRIPTIVE ANALYTICS

To evaluate our methodology, we consider a dataset from
Stack Overflow, a popular CQA site for software developers.6

In this section, we detail our data collection (Sec. III-A) and
analyze the dataset in terms of the model features (Sec. III-B).

5If u and v have no common neighbors, Reu,v = 0. Similarly, when there
are no paths between u and v, these terms are removed from lu and bu.

6www.stackoverflow.com

Fig. 3: Plot of net votes against response time for each user-question
pair in the dataset. The smallest number of observed votes (−6) is
calibrated to 1. Surprisingly, there is no apparent tradeoff relationship
between response quality (vu,q) and timing (ru,q), indicating that
these question routing objectives may not always be competing.

A. Data Collection and Processing

We queried the Stack Exchange API7 for all questions
created on Stack Overflow with the generic tag “Python” in the
30-day span from June 3 to July 3, 2018. This process yielded
20,923 questions and 19,934 total answers generated by 9,947
askers and 6,451 answerers, with 14,643 distinct users.

In processing the data to create user-question pairs, we
filtered out any question that did not receive at least one
answer. Then, where a user posted more than one answer to
a question (only about 50 cases total), we took the one with
the highest score. Additionally, some answers were found to
be posted at the same time as the question was asked; we also
removed these user-question pairs from the dataset. After these
preprocessing steps, we were left with 12,488 questions asked
by 9,318 users, and 18,414 answers posted by 5,234 users, for
a total of 14,064 unique users. If we define A = [au,q] as the
user-question answering matrix over all users u who answered
at least one question, then, only 0.03% of the elements in A
for our dataset are 1. This underscores an extreme sparsity of
user-question pairs for response prediction, and further justifies
our choice of classifier for au,q in Sec. II to prevent overfitting.
Social graphs. Figure 2 visualizes the two social graphs
GQA and GD defined in Sec. II-B across the entire dataset,
i.e., taking Ω = Q over all 12K questions. The nodes here
are the 14K users, with links between them according to
the corresponding adjacency matrices. In these visualizations,
users with higher degree are drawn closer to the center. With∑
v wu,v as the degree of node u in an undirected graph,

the average user degree is 2.6 in the question-answer graph,
and rises to 3.7 in the denser graph that connects all users
posting in the same thread. Despite this difference, we see
from the outer rings in Figure 2 that both social graphs
are disconnected, i.e., many user pairs do not have paths
connecting them. This implies that there is high variance in
the degree distributions, which further motivates the inclusion
of structural features like centrality measures in Sec. II-B.
Net votes vs. response time. Recall from Sec. I our discussion
on the possibility of response quality vu,q and timing ru,q

7https://api.stackexchange.com

www.stackoverflow.com
https://api.stackexchange.com


(a) User answer activity au. (b) Median response time ru by activity au. (c) Average of votes vu by activity au.

(d) User-question su,q and user-user su,v topic sim-
ilarities.

(e) Word text xq and code cq lengths. (f) Betweenness bQA
u , bDu and closeness lQA

u , lDu
centralities, each normalized to a maximum of 1.

Fig. 4: Cumulative distribution functions (CDFs) of select quantities comprising the xu,q feature vectors. They show that (a) users are
relatively active, while those who are more active tend to (b) have shorter response times but (c) not necessarily more average votes. Users
also (d) tend to be more similar to question askers than the questions themselves and (f) have substantial variation in centrality measures.

being two competing objectives for question routing. To inves-
tigate this, after computing the dependent prediction variables
vu,q , ru,q , and au,q for each user-question pair in the dataset,
we plot vu,q against ru,q in Figure 3 for all user-question pairs
with au,q = 1. Surprisingly, there is no correlation between
these quantities, implying that a shorter response time does not
necessarily come at the expense of a lower quality answer or
vice versa. The objectives may not always be competing after
all. This further underscores the importance of including both
quality and timing as prediction tasks in our methodology,
since one cannot be inferred from the other yet both are
important components of user satisfaction.

B. Statistical Analysis of Features

After computing the feature vectors xu,q over the full
dataset, we plot the distributions of selected features in Fig-
ure 4. These are the subject of the following observations:
(i) Answers provided au (Fig. 4a): The number of answers
posted by a user is an indication of their activity level. We see
that roughly 40% of users posted two or more answers, indi-
cating that many users were active on Stack Overflow during
this period. This contrasts other types of discussion forums,
e.g., those for Massive Open Online Courses (MOOCs) [4]
where activity is centered around a small number of users.
(ii) Response time ru (Fig. 4b): A user’s median response time
ru over the answers they provided is lessened noticeably as
their activity level au increases. For example, roughly 80% of
users with au ≥ 5 have ru ≤ 1 hr, while this percentage drops
to 60% for au ≥ 1. Users who spend more time on the forums
may be more aware of newly posted questions, foreshadowing

an observation we will make in Sec. IV that au is among the
most predictive features for response timing ru,q .
(iii) Average net votes vu (Fig. 4c): The average votes re-
ceived vu across questions answered reflects the quality of u’s
responses. We see that while all users with at least one answer
(au ≥ 1) tended to have lower average votes than users who
provided multiple responses, as long as users answer more
than once (au ≥ 2) there is no significant variation between
the distributions of different total answers. Answering more
than one question therefore may be a threshold beyond which
a user tends to be perceived by others as authoritative.
(iv) Topic similarities su,q, su,v (Fig. 4d): Recall from Sec.
II-B that the user-user su,v and user-question su,q topic
similarities are calculated as differences in inferred topic
distributions d. These features show an interesting trend:
answerers tend to have more similarity to the user who asked
the question than to the question itself. For example, 90%
of the user-question pairs have a similarity of su,q ≤ 0.6,
compared to only 60% for the same threshold on su,v . This is
consistent with an observation we will make in Sec. IV that
social similarity between users is more predictive of posting
activity than user-question topic similarity.
(v) Question lengths xq, cq (Fig. 4e): The median lengths of
word text xq and code cq appearing in questions are both
roughly 300 characters. The variation of cq across questions
is significantly higher than xq , however, with an apparent limit
on the words users will write; this is consistent with the length
of code likely needing to vary by the type of question.
(vi) User centralities bQAu , bDu , l

QA
u , lDu (Fig. 4f): Four of the

social features from Sec. II-B are betweenness bQAu , bDu and
closeness lQAu , lDu centralities measured on the two graphs.



Task Metric Baseline Our model Improvement
au,q AUC 0.699± 0.005 0.860± 0.004 23.0%
vu,q RMSE 1.554± 0.057 1.213± 0.118 21.9%
ru,q RMSE 34.247± 4.641 26.353± 3.566 22.8%

TABLE I: Performance on all three prediction tasks over the full
dataset. Our models significantly outperform the baselines in each
case.

We see that each measure exhibits significant variation across
users, consistent with the observations from Figure 2. Close-
ness and betweenness are also markedly different from one
another, with 60% of users having zero bu while lu has clusters
around 10−4 and 10−1. The fact that lu changes between
graphs while bu does not implies that while the dense graph
lowers path distances, it does not create many new paths
between users unconnected in the question-answer graph.

IV. PREDICTION EVALUATION

We now evaluate the methodology proposed in Sec. II. After
describing the evaluation procedure and baseline algorithms
(Sec. IV-A), we investigate overall performance (Sec. IV-B),
the importance of specific features (Sec. IV-C), and the impact
of historical data (Sec. IV-D) on the prediction tasks.

A. Evaluation Setup

For each experiment, each algorithm is evaluated over
several iterations. In each iteration k, a training set STk and a
testing set Sek of user-question pairs (u, q) are sampled over
the partition of questions Ω ⊆ Q under consideration such that
STk ∩ Sek = ∅. The feature vector xu,q for each sample (u, q)
in STk and Sek is computed over a set of questions F(q). The
choice of Ω and F(q) will vary by experiment, particularly to
analyze the effect of historical data.
Baselines. We establish one baseline for each prediction task.
(i) SPARFA for au,q: The sparse factor analysis (SPARFA)
algorithm [19] was developed to predict the correctness of a
user’s response to a question. We use this as the baseline for
the task of predicting whether a user will answer a question
since it has consistently outperformed other binary matrix
completion methods.
(ii) MF for vu,q: Collaborative filtering techniques have had
demonstrable success in recommender system prediction tasks
involving user-item matrices [2], [7], [20]. As a result, we
employ (non-binary) matrix factorization (MF) [21] as the
baseline for net vote prediction. The fact that SPARFA and
MF learn over user u and question q indices allows us to
evaluate the quality of our features xu,q by comparing their
prediction performance against our models.
(iii) PR for ru,q: Since response time prediction has not been
a focus of prior research on question recommendation, we
resort to Poisson regression (PR) as a baseline, which has
been used to model e.g., web traffic inter-arrival times [22].
In our context, we use the features xu,q as regressors, and the
target r̄u,q = dru,qe is a discretized (ceiling) version of ru,q .
Metrics. We employ two metrics to evaluate the performance
of the trained predictors on the test set Sek in each iteration k:

Fig. 5: Performance of models on prediction tasks from varying the
number of topics K from the default of 8. There is virtually no
effect on ru,q , only small impact on au,q , and relatively larger change
on vu,q . Thus, while K = 8 obtains significant improvements over
baselines in Table I, better results may be possible for vu,q .

(i) AUC: The area under the ROC curve (AUC) assesses the
tradeoff between the true and false positive rates of a classifier.
We apply this metric to the binary prediction task for au,q , i.e.,
comparing âu,q and au,q over Sek . We employ AUC rather than
e.g., accuracy due to dataset imbalance [6].
(ii) RMSE: For the non-binary tasks vu,q and ru,q , we calculate
the root mean squared error (RMSE) between the predictions
ŷu,q and targets yu,q on Sek [7]. Formally, this is calculated as√√√√ 1

|Sek|
∑

(u,q)∈Se
k

(ŷu,q − yu,q)2

where y is either response time r or net votes v.
Training and testing. 5-fold stratified cross validation is used
to train and evaluate each predictor. More specifically, in each
iteration k, 20% of user-question pairs over Ω with au,q = 1
are allocated randomly to each fold, with four then used as STk
and one used as Sek . Due to variation in user activity (Fig. 4a),
each user’s answers are allocated uniformly (stratified) across
folds. This procedure is followed for both the vu,q and ru,q
prediction tasks. For au,q , negative samples (au,q = 0) are also
needed; as a result, we follow a procedure similar to [6] and
sample |STk ∪ Sek| user-question pairs with au,q = 0 equally
across questions Q and randomly allocate them to STk and
Sek . In this way, each fold has a balanced number of samples.
Cross validation is repeated 5 times, for a total of 25 iterations.
In each iteration, the features xu,q are computed over the set
of questions F(q) for each pair.

Two different network configurations are used for response
quality vu,q and initial excitation µu,q . The network configura-
tion for response quality is L = 4 with 20 hidden units in each
layer and nonlinearity σ = ReLU. For the initial excitation,
a shallower network configuration was used with L = 2
having 100 and 50 hidden units in each layer, respectively,
and nonlinearities σ = tanh for the hidden layers and σ =
ReLU for the output layer. On the other hand, we found that
neural networks for the decay rate ωu,q did not yield benefit
over a constant value ωu,q = 10, 000 on this dataset, though



Fig. 6: Feature importance analysis for response quality vu,q and timing ru,q predictions. The percent change in RMSE from the full feature
set xu,q is shown when each is removed one-by-one (left axis for v, right axis for r). The importance of user and question features tend to
vary widely by task (with ru and vq being most important, respectively), while the user-question and social features are more consistent.

we believe increased performance can be achieved in other
applications by modeling nonlinearities in both µu,q and ωu,q .
For MF and SPARFA we set the latent dimension to 5 and
3, respectively [19], and for LDA we set K = 8 topics [4].
Larger parameter values did not alter our results substantially.

B. Performance Comparison with Baselines

To establish the overall quality of our methodology, our
first experiment evaluates each predictor on the full set of
questions (i.e., Ω = Q), with each feature vector computed
on all prior question data (i.e., F(q) = {q′ : q′ ≤ q}
with questions ordered chronologically). Table I shows the
means and standard deviations of the metrics obtained on
each prediction task for both the baselines and our model.
Overall, we find that our algorithms outperform the baselines
for each task, with improvements of 22-23% in each case. The
improvement that our algorithm obtains on au,q validates our
defined set of features, and that of vu,q and ru,q validates our
point process and neural network model design. These results
also shows that it is possible to predict both response timing
and quality simultaneously, despite these quantities having
been seen to be entirely uncorrelated in Figure 3.

For completeness, we also run an experiment varying the
number of topics K used for each prediction task. The results
are shown in Figure 5, where we measure the percent change
in each evaluation metric from the default K = 8 for several
choices of K. The number of topics has virtually no effect on
the ru,q task, while it has a small affect on au,q and a more
noticeable impact on vu,q . While K = 8 obtains close to the
best results for au,q , up to 5% increase in performance can be
obtained for vu,q by changing K = 15. This implies that even
further improvement could be obtained over the baseline for
vu,q in Table I by treating K as a tunable parameter.

C. Feature Importance Analysis

We now assess the impact of each feature comprising xu,q
(specified in Sec. II-B) on the response time ru,q and quality
vu,q prediction tasks. To do this, we run 20 experiments with
each feature excluded one-by-one, taking Ω = Q and F(q) =
{q′ : q′ ≤ q}, and measure the average percent increase in
RMSE from the full feature set case. The results are plotted
in Figure 6; in what follows, we discuss key observations.

At a high level, we see that individual features tend to
be more important for ru,q (right axis) than vu,q (left axis).
This implies that response time is a more significant interplay
between the features than response quality. In particular, the
greatest percent change in RMSE for ru,q was 48% from
excluding ru, the average response time of the user, as opposed
to 8.6% for vu,q due to vq , the votes received on the question.

It is intuitive that vq is important to the response quality
task. On the other hand, vu, the prior user votes, was not
seen to affect the RMSE of this task at all. In fact, none of
the user features are particularly important to predicting net
votes with the exception of ru, which is surprising due to the
observed lack of correlation between these quantities in Figure
3. The importance of vq and ru to vu,q implies that the desire
by users for a question to be answered can lead to a better
response, or at least that having more users interested in the
thread generates more reactions when a response is posted.
In contrast, the user features are as a whole rather important
to predicting response time, with ru and au – the number
of prior answers – being the most predictive. This suggests
that active answerers are more likely to respond quickly, a
tendency which is captured by the point process model, and
is consistent with Figure 4b.

The user-question features tend to have higher importance
than the user features for vu,q , and than the question features
for ru,q . gu,q , the topic-weighted questions answered, and eu,q ,
the topic-weighted answer votes, are both rather important to
ru,q , suggesting that while an answerer’s history of net votes is
not indicative of their response time, the votes they received
towards the topic of the question motivate them to respond
quicker. Also, su,q , the topic similarity between answerer and
question, is less important than su,v , that between the asker
and answerer. This suggests that user discussion similarities
are more predictive of timing and quality than the questions
themselves, reinforcing the observation in Figure 4d. The fact
that the user and question topic distributions (du and dq)
are not as important as su,v also suggests that users respond
according to similarity rather than universally popular topics.

Some of the social features are even more important than
user-question features: the exclusion of lQAu , the closeness
centrality of the question-answer graph, causes 2.0% and 17%
improvements in RMSE for vu,q and ru,q , while lDu , the



(a) Net votes vu,q task. (b) Response timing ru,q task.

Fig. 7: Results for the impact of the length of historical data on the predictive capability of each group of features. In each experiment, a
group of features is excluded from xu,q , the included features are computed over a window of historical data, and the RMSE of the resulting
model is evaluated on the last five days of threads. The user, question, and user-question features are each most important in at least one
case, underscoring the importance of including a diverse set of features as the level of historical data can vary in practice.

closeness in the denser graph, changes the RMSE of vu,q
by 4.0%. Overall, this suggests that topics aside, the inferred
social network structure has features that are rather predictive
of both tasks. The betweenness centralities (bQAu and bDu )
of both graphs are also important (though more so for the
question-answer graph), which can be explained by users who
are connected to multiple sub-communities being more active
and/or possibly able to collect information on topics across
complementary threads. The importance of social features on
both graphs is consistent with their variation observed in
Figure 4f, suggesting in general that care must be taken in
how the network structure is defined for prediction. Also, the
lesser importance of the resource allocation indices (ReQAu,v
and ReDu,v) to the tasks compared with other features is in
contrast to [6], which found this feature most predictive of user
interactions in the forums of online courses: topic similarity
seems to play a more noticeable role on CQA sites.

D. Impact of Historical Data

Finally, we study how the importance of each group of
features varies based on the timeframe of historical data
available for inference. To do this, letting Di ⊂ Q be the set
of questions created in day i = 1, . . . , 30 of the dataset, we fix
Ω = {q ∈ D25∪· · ·∪D30} as the last days for evaluation, and
run 20 experiments for the vu,q and ru,q prediction tasks vary-
ing both (i) which of the four feature groups is excluded from
xu,q and (ii) the inference set F(q) = {q′ ∈ D25−i∪· · ·∪D25}
for i = 5, 10, . . . , 25. Higher values of i give more days of
historical data on which each feature is computed. The results
are given in Figure 7, showing the average RMSE obtained
in each case; a taller bar implies higher importance of the
excluded feature for the given experimental setting.

Overall, we see that each of the user, question, and user-
question features have at least one instance in which they are
most important. This underscores the necessity of including
diverse feature groups in the model, as the level of historical
data available can vary. More specifically, over the first 20
days of historical data, the question and user feature groups are
most important to vu,q and ru,q , respectively, consistent with

the finding in Figure 6 of vq and ru having the highest impact.
With 25 days of data, however, the user-question features be-
come most critical to vu,q , and are among the most important
to ru,q . This implies that associations between answerers and
questions are particularly sensitive to the amount of historical
data, which may be due to topic similarities (su,v) and topic-
weighted votes (eu,q) becoming more stable over time.

The social features show opposing trends between the two
prediction tasks: for ru,q , they monotonically increase in
importance over time, while for vu,q they are more variable
and actually decrease with more historical data. This indicates
that when viewed over a long timescale, the social network
structure contains information more predictive of response
times, while a recent window of interactions may be more
indicative of response quality. This may be explained by
answerers tending to respond quicker to askers they have a
long history of interaction with, while the newer connections
arising in a more recent time window tending to be formed
by answerers seeking out topics they have expertise in.

V. DISCUSSION AND QUESTION RECOMMENDATION

The results in Sec. IV show overall that our methodology
can effectively predict who (au,q), when (ru,q), and with what
quality (vu,q) a question posted on an online discussion forum
will be answered, with large performance improvements over
baselines (Table I). They also indicate that user, question,
user-question, and social features are each important to the
prediction tasks in their own right (Figure 6), while the most
predictive features may vary depending on the specific task
and length of historical data available for training (Figure 7).

Referring back to Figure 1, the final step of our methodol-
ogy is to build a question recommendation system. We will
now formulate a question routing algorithm that uses our
predictors to jointly optimize response time and quality.
Question recommendation. At time indices n = 1, 2, . . .
separated by a fixed interval (e.g., once an hour), we are
interested in recommending a new question q′ that arrives
between n and n+ 1 to the set of users that are predicted to
post high-quality answers in a short period of time. Using the



available sets of questions Q(n) and users U(n), the feature
vectors xu,q′(n) are computed for each u ∈ U(n), along
with the predictions âu,q′(n) = Fa(xu,q′(n)), v̂u,q′(n) =
Fv(xu,q′(n)), and r̂u,q′(n) = Fr(xu,q′(n)). With this, the
set Uq′ = {u : âu,q′(n) ≥ ε} of eligible answerers to q′ is
obtained (where ε is a tunable parameter), and the following
optimization problem is solved for q′ over Uq′ :

maximize
pq′ (n)

∑
u∈Uq′

(v̂u,q′(n)− λq′ r̂u,q′(n)) · pq
′

u (n)

subject to 0 ≤ pq
′

u (n) ≤ cu −
∑
q

I∑
i=0

zu,q(n− i), ∀u ∈ Uq′∑
u∈Uq′

pq
′

u (n) = 1. (2)

Here, pq
′
(n) = (pq

′

1 (n), pq
′

2 (n), . . .) is a probability distri-
bution over the eligible set of users Uq′ , and pq

′

u (n) can be
interpreted as the probability that u will be recommended
to answer q′. ε ∈ (0, 1) controls the tradeoff between con-
forming to answerer behavior (i.e., recommending questions
they would likely answer anyway) and the number of choices
|Uq′ | available to the recommendation system. λq′ is another
parameter, controlling the importance of response quality
(v̂u,q′ ) versus timing (r̂u,q′ ) for the particular question q′, and
might be set by the question asker. cu is an upper bound
on the amount of questions u can answer in a time period
I (due to external factors, e.g., time commitments), from
which the number of observed answers is subtracted, with
zu,q(n) = au,q(n)−au,q(n−1) denoting whether u answered
q between n−1 and n. Like λq′ , cu may also be user specified,
or could be inferred from user behavior collected over time.

The choice of pq
′

u (n) as a probability across users rather than
a binary assignment to a single user has several advantages.
First, it makes (2) a linear program, which can be solved
substantially faster than integer programs at this scale [4].
Second, it generates a ranking of potential responders that can
be drawn from several times until an answer is recorded.

VI. CONCLUSION

In this paper, we developed novel methodology for the
joint prediction of response quality and timing in online
discussion forums. Our neural network and point process-
based algorithms learn over a set of 20 features for each
sample that we formulated and divided into four groups:
user, question, user-question, and social features. Through
evaluation on a dataset from Stack Overflow consisting of
20,000 question threads, we found that our models were able
to obtain substantial improvements of more than 20% over
baselines for each prediction task, and that the features most
important to the predictions vary based on the task and amount
of historical data available. Using our models, we finally
proposed a question recommendation system that utilizes our
three predictors to recommend questions to be answered by
jointly optimizing net votes and response time. The main
next step for future work is incorporating our recommendation

system into an online forum platform to observe its impact;
the quality of the approach could be evaluated through A/B
testing, comparing the net votes and response times observed
in a group with the system in use to one with it not. The learnt
features can provide analytics to forum administrators too.

REFERENCES

[1] G. Wang, K. Gill, M. Mohanlal, H. Zheng, and B. Y. Zhao, “Wisdom
in the Social Crowd: An Analysis of Quora,” in WWW. ACM, 2013,
pp. 1341–1352.

[2] X. Cheng, S. Zhu, S. Su, and G. Chen, “A Multi-Objective Optimization
Approach for Question Routing in Community Question Answering
Services,” IEEE Transactions on Knowledge and Data Engineering,
vol. 29, no. 9, pp. 1779–1792, 2017.

[3] T. C. Zhou, M. R. Lyu, and I. King, “A Classification-based Approach
to Question Routing in Community Question Answering,” in WWW.
ACM, 2012, pp. 783–790.

[4] C. G. Brinton, S. Buccapatnam, F. M. F. Wong, M. Chiang, and H. V.
Poor, “Social Learning Networks: Efficiency Optimization for MOOC
Forums,” in IEEE INFOCOM. IEEE, 2016.

[5] M. Bouguessa, B. Dumoulin, and S. Wang, “Identifying Authoritative
Actors in Question-answering Forums: The Case of Yahoo! Answers,”
in ACM SIGKDD. ACM, 2008, pp. 866–874.

[6] T.-Y. Yang, C. G. Brinton, and C. Joe-Wong, “Predicting Learner
Interactions in Social Learning Networks,” in IEEE INFOCOM. IEEE,
2018.

[7] C. G. Brinton and M. Chiang, “MOOC Performance Prediction via
Clickstream Data and Social Learning Networks,” in IEEE INFOCOM.
IEEE, 2015, pp. 2299–2307.

[8] M. Qu, G. Qiu, X. He, C. Zhang, H. Wu, J. Bu, and C. Chen, “Probabilis-
tic Question Recommendation for Question Answering Communities,”
in WWW. ACM, 2009, pp. 1229–1230.

[9] L. Wang, B. Wu, J. Yang, and S. Peng, “Personalized Recommendation
for New Questions in Community Question Answering,” in IEEE
ASONAM. IEEE, 2016, pp. 901–908.

[10] J. Yang, S. Peng, L. Wang, and B. Wu, “Finding Experts in Community
Question Answering Based on Topic-Sensitive Link Analysis,” in IEEE
DSC. IEEE, 2016, pp. 54–60.

[11] F. M. F. Wong, Z. Liu, M. Chiang, F. Ming Fai Wong, Z. Liu,
and M. Chiang, “On the efficiency of social recommender networks,”
IEEE/ACM Transactions on Networking, vol. 24, no. 4, pp. 2512–2524,
2016.

[12] M. Glenski and T. Weninger, “Predicting User-Interactions on Reddit,”
in IEEE/ACM ASONAM. ACM, 2017, pp. 609–612.

[13] R. Xiang, J. Neville, and M. Rogati, “Modeling Relationship Strength
in Online Social Networks,” in WWW. ACM, 2010, pp. 981–990.

[14] A. S. Lan, J. C. Spencer, Z. Chen, C. G. Brinton, and M. Chiang,
“Personalized Thread Recommendation for MOOC Discussion Forums,”
in ECML-PKDD, 2018.

[15] Y. Yao, H. Tong, T. Xie, L. Akoglu, F. Xu, and J. Lu, “Joint Voting Pre-
diction for Questions and Answers in CQA,” in IEEE/ACM ASONAM,
2014, pp. 340–343.

[16] Y. Yao, H. Tong, F. Xu, and J. Lu, “Scalable Algorithms for CQA
Post Voting Prediction,” IEEE Transactions on Knowledge and Data
Engineering, vol. 29, no. 8, pp. 1723–1736, 2017.

[17] D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point
Processes. Springer, 2003.

[18] M. Farajtabar, S. Yousefi, L. Tran, L. Song, and H. Zha, “A Continuous-
Time Mutually-Exciting Point Process Framework for Prioritizing
Events in Social Media,” arXiv preprint arXiv:1511.04145, Nov 2015.

[19] A. S. Lan, A. E. Waters, C. Studer, and R. G. Baraniuk, “Sparse Factor
Analysis for Learning and Content Analytics,” The Journal of Machine
Learning Research, vol. 15, no. 1, pp. 1959–2008, 2014.

[20] D. Yang, D. Adamson, and C. P. Rosé, “Question Recommendation with
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