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Abstract—We present a novel method for predicting the evolu-
tion of a student’s grade in massive open online courses (MOOCs).
Performance prediction is particularly challenging in MOOC
settings due to per-student assessment response sparsity and
the need for personalized models. Our method overcomes these
challenges by incorporating another, richer form of data collected
from each student—lecture video-watching clickstreams—into the
machine learning feature set, and using that to train a time series
neural network that learns from both prior performance and
clickstream data. Through evaluation on two MOOC datasets, we
find that our algorithm outperforms a baseline of average past
performance by more than 60% on average, and a lasso regression
baseline by more than 15%. Moreover, the gains are higher when
the student has answered fewer questions, underscoring their
ability to provide instructors with early detection of struggling
and/or advanced students. We also show that despite these gains,
when taken alone, none of the behavioral features are particularly
correlated with performance, emphasizing the need to consider
their combined effect and nonlinear predictors. Finally, we discuss
how course instructors can use these predictive learning analytics
to stage student interventions.

Index Terms—Clickstream data analysis, learning analytics,
MOOC, student performance prediction.

I. INTRODUCTION

MASSIVE Open Online Courses (MOOCs) have exploded
in popularity over the past five years. MOOC delivery

platforms such as Coursera, edX, and Udemy have partnered
with content providers to deliver hundreds of thousands of
courses to tens of millions of students around the world, ei-
ther for free or at very cheap prices. An estimated 35 million
people signed up for at least one MOOC in 2015, an increase
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of 50% from the year before [1]. Today, entire degree programs
are offered through MOOC, with the eventual goal of providing
global access to world class instruction [2].

For all their benefits, the quality of MOOCs has been the
target of criticism. Research has pointed to their low comple-
tion rates–below 7% on average–as a property preventing more
widespread adoption of these courses among instructors and in-
stitutions [3]. These high dropoff rates are often attributed to fac-
tors such as low teacher-to-student ratios, the asynchronous na-
ture of interaction, and heterogeneous educational backgrounds
and motivations, which make it difficult to scale the efficacy
of traditional teaching methods with the size of the student
body [4].

As a result, research on MOOCs is studying, and in turn at-
tempting to enhance, student engagement and knowledge trans-
fer in these online settings. The plethora of data that con-
temporary MOOC platforms (and eLearning platforms more
generally) collect about users has ignited interest in data mining
approaches, i.e., surfacing analytics to instructors that help them
diagnose student needs. To see the value of this approach, con-
sider the three dominant modes of learning in MOOCs: lecture
videos, assessment questions, and social discussion forums. For
video content, clickstream events are captured, with a record
generated each time a student interacts with a video specifying
the particular action, position, and time at which it occurred.
For assessments, the specific responses to individual questions
are recorded. For the discussion forums, all posts, comments,
and votes made by learners and instructors are stored as well.
This data has led to analytics both about learners and about con-
tent [5], such as the identification of Social Learning Networks
(SLN) among students [6], relationships between engagement
and performance levels [4], and segments of focus in lecture
videos [7].

A. Predictive Learning Analytics

Within the field of MOOC analytics, predictive learning an-
alytics (PLA)–methods that predict MOOC learning outcomes
at different points in a course, so that appropriate actions can be
taken in advance–is a relatively new area of exploration [8]. A
student’s course grade would be a particularly useful quantity
to forecast, because it is indicative of how well the course is
matched to the student’s needs: a student who performs poorly
needs attention from an instructor, while a student who performs
exceedingly well may not be challenged enough by the mate-
rial. It has been observed that both of these extreme cases will
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cause dropoffs [9]. If instructors were given an indication early
on about which learners were likely to perform poorly before
course completion, and at which points these falloffs were likely
to occur, they could e.g., stage interventions or change content
as preventative actions. The fact that students begin dropping
off even during the first week underscores the utility of algo-
rithms that can provide early detection of poor or exceptional
user performance [4].

Grade prediction for MOOC has two unique challenges. The
first is assessment response sparsity [10]: many students choose
to only answer a few assessment questions, making it difficult
to learn from this data alone. Second, our prediction models
need to be personalized to different students, since learners have
different motivations for taking MOOCs, which affects their be-
havior [11]. In this paper, we present and evaluate a time series
neural network method that overcomes these challenges. Our
algorithm predicts a MOOC student’s overall course grade as
he/she progresses through the course material, taking as in-
put his/her prior (i) assessment performance and (ii) video-
watching behavior. For the video-watching aspect, certain be-
havioral quantities (e.g., number of rewinds, average playback
rate, fraction completed) that have been found to be correlated
with quiz success are computed from the student’s clickstream
measurements [10].

We evaluate the quality of two algorithms, one learning from
quiz (i.e., assessment) features only (FTSNN) and one from
both behavioral features and quiz features (IFTSNN), against
two baselines, one based on averaged past performance and one
based on lasso regression, on two MOOC datasets. Overall, we
find that:

1) Both algorithms consistently outperform both baselines,
with average RMSE improvements of > 61% for IFTSNN
and >49% for FTSNN over the naive baseline.

2) IFTSNN outperforms FTSNN overall as well, with an
average improvement of >10%, underscoring the impor-
tance of clickstream data to MOOC grade prediction.

3) In the case where only a few assessment results are avail-
able, however, FTSNN has the highest performance, indi-
cating that performance-only algorithms may be sufficient
for earliest detection.

4) Taken alone, none of the video-watching behavior quanti-
ties are particularly predictive of average grades, demon-
strating the importance of considering their combined
effect to predict student performance.

5) Personalized prediction models are exceedingly impor-
tant, as applying parameters tuned to other students is less
accurate than even the naive baseline algorithm.

We note that the overall purpose of our work is to assess the
feasibility of a neural network-based algorithm for MOOC per-
formance prediction. We make no claim that either the IFTSNN
or FTSNN models developed here are the “optimal” predic-
tors, i.e., higher quality may be possible with alternate network
configurations tuned to specific courses. The above insights
should instead be taken as lower bounds on the potential for
behavior-based grade prediction via the family of neural network
algorithms.

B. Related Work

The proliferation of MOOCs has led to several analytical
studies on their datasets. Some research has focused on un-
derstanding student motivation and engagement across learning
modes, e.g., [12], [13]. Other works have analyzed student be-
havior on specific modes, e.g., [6], [14] quantified participation
on MOOC forums and [15], [16] studied interaction patterns
in lecture videos. There has also been work on identifying tax-
onomies of student motivation for enrolling in MOOCs [11]. Our
work is fundamentally different from these in that it focuses on
algorithms for predictive analytics.

Methods for student performance prediction have been pro-
posed and evaluated, mainly for traditional online and brick-
and-mortar education settings. These include predicting how
students will perform on assessments they have not yet taken
[2], [17], [18] and what their final grades will be [19], [20],
typically using their past assessment scores. Most recently, [19]
proposed an algorithm to optimize the timing of grade pre-
dictions, and [2] proposed a deep learning version of student
knowledge tracing. We instead consider performance predic-
tion for MOOC settings, in which per-student performance data
is sparse, necessitating the use of behavioral modeling.

In this regard, there have been a few recent works on pre-
dictive analytics for MOOC, proposing algorithms to predict
dropoff rates [21], [22] and assessment scores [4], [10], [22],
[23]. Among these, [4], [10] studied the relationship between
video-watching behavior and in-video quiz performance and
used the results as features for prediction; unlike these works,
we consider the time series aspect of assessment responses and
develop a personalized model for each student. Some works have
studied prediction of average grades over time. [23] proposes
a linear multi-regression model for assessment performance,
using video, assessment, and time-related features; we apply
neural networks on a similar set of features to increase predic-
tion quality (with RMSEs as low as 0.06, compared to 0.16 to
0.23 in [23]). Finally, [22] uses demographic, discussion forum,
and chapter access data as features in a probabilistic graphical
model framework; our work focuses on a more specific set of
video-watching features.

C. Our Methodology

Fig. 1 summarizes the main components of the grade predic-
tion methodology we develop in this paper. At a given point
in time, each student’s video-watching clickstream data and as-
sessment grades are processed to compute a set of prediction
features for that student (Sections II-A and III-A). These features
are subsequently used to train time series neural networks that
account for the sparsity of the data (Section II-C), after partition-
ing the data for training and testing accordingly (Section II-B).
Model quality is determined through RMSE, comparing against
two baselines, one of averaged historical performance and one
of linear regression, to give a relative gain (Section IV).

These personalized models are then used to predict how the
student’s grade will evolve as he/she progresses through more
material. Fig. 2 summarizes the sequence of online predictions
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Fig. 1. Summary of the different components of the learning outcome prediction method we develop in this paper.

Fig. 2. Sequence of average CFA predictions made online as a student
moves through the course. Each train, retrain, and prediction step involves the
components in Fig. 1.

as the student moves through the course. After the student takes
a quiz j − 1 > d, where d is the memory of the time series,
we split the student’s past video watching behavior and quiz
performance into training and testing datasets and retrain our
prediction model. We then use the retrained model to predict
the average CFA after the student takes quiz j, based on quizzes
1, 2, ..., j − 1. Each time a student takes another quiz, new data
is used to refine the model parameters, and the predictions are
updated accordingly. Finally, the predictions, model quality, and
feature distributions will be provided to the instructor through
an appropriate dashboard interface so that the instructor can take
necessary action (Section V).

Contribution: The key contributions of this paper are sum-
marized as follows:

1) We propose a method for predicting course grades from
behavioral data in MOOCs using a novel set of features
in a time-series neural network, overcoming the challenge
of assessment data sparsity.

2) We show that personalized prediction models are essen-
tial for predictive analytics in MOOCs, since different
students’ behavior differs significantly.

3) We demonstrate the benefit that different forms of data–
prior grades and prior clickstream behavior–offer for
grade prediction in MOOCs.

II. GRADE PREDICTION ALGORITHM

In this section, we first introduce the input and output vari-
ables of our algorithms, and then describe our algorithm design
and evaluation method.

A. Input Features and Course Grade

Fig. 3 shows the general structure of a MOOC with lec-
ture videos and quizzes. The course is delivered as a sequence

of videos, with in-video quizzes interspersed at points desig-
nated by the instructor. With quizzes indexed sequentially as
j = 1, 2, . . ., the Kj videos occurring between quizzes j − 1
and j are denoted (j, 1), ..., (j, k), ..., (j,Kj ).

The datasets we use in this paper come from two of our
MOOCs on Coursera. The first one is called “Networks: Friends,
Money, and Bytes” (NFMB) [24], and the second one is called
“Networks Illustrated: Principles without Calculus” (NI) [25].
Both are networking courses that cover similar topics, but the
material in NFMB is more advanced than that in NI. NFMB
has 92 videos with exactly one quiz after each video (i.e., Kj =
1 ∀j), while NI has 69 quizzes, some of which are preceded
by multiple videos. We obtained two types of data from each
MOOC: clickstream data and quiz answers.

Clickstream data for video (j, k): When a student watches
a video, he/she may play, pause, slow down or speed up, or
jump to another place in the video. MOOC providers store these
events along with their video positions, UNIX timestamp of oc-
currence, and student/video identifiers. Analyzing them gives
insight into learning behavior [4]: for example, when the con-
tents of the video confuse a student, he/she may pause and
re-watch the confusing part of the video. On the other hand,
when a student is familiar with the concepts in a video, he/she
may skip the video or watch only selected portions and quickly
move to the next video. These clickstream data thus reflect the
learning behavior of each specific student, creating a unique,
personalized learning pattern.

Answer to quiz j: In both the NFMB and NI datasets, each
quiz consists of a single multiple choice question with exactly
one correct answer. We gauge success on a quiz as whether the
student successfully answers the question Correctly on his/her
First Attempt (CFA) or not (non-CFA) [4].

Our prediction algorithm uses both clickstream data and quiz
responses to forecast students’ course performance. In order to
do so, we first transform the raw clickstream data to several
algorithm input features, and use the students’ quiz responses
to define a performance measure.

Input clickstream features: Following the clickstream pre-
processing methods outlined in [10], we compute eight input
features from each video for each student:

1) Fraction completed (F-Co): The percentage of the video
that the student played, not counting repeated intervals
more than once; hence, it must be between 0 and 1.
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Fig. 3. General sequence of lecture videos and in-video quizzes in a MOOC.

2) Fraction spent (F-Sp): The amount of (real) time the
student spent on the video (i.e., while playing or paused)
divided by its total playback time.1

3) Fraction played (F-Pl): The amount of the video that the
student played, including repetitions, divided by its total
playback time.

4) Fraction paused (F-Pa): The amount of time the student
spent paused on the video, divided by its total playback
time.

5) Number of pauses (N-Pa): The number of times the stu-
dent paused the video.

6) Average playback rate (A-PR): The time-average of the
playback rates selected by the student while in the playing
state. The player on Coursera allows rates between 0.75×
and 2.0× the default speed.

7) Standard deviation of playback rates (S-PR): The stan-
dard deviation of the playback rates selected over time.

8) Number of rewinds (N-R): The number of times the stu-
dent skipped backward in the video.2

In order to enforce a one-to-one correspondence between
videos and quizzes, we average each of the eight features over
all videos between consecutive quizzes for NI. Since each quiz
j covered material in videos (j, 1), ..., (j,Kj ) between quizzes
j − 1 and j, our averaging ensures that we have a comprehensive
picture of students’ relevant video watching behavior. For ease
of exposition, we refer to these averaged features as correspond-
ing to “video j,” an aggregation of videos (j, 1), . . . , (j,Kj ).
Average CFA grade: We define a student’s performance in the
course at a given point in time as his or her average quiz grade,
i.e., the average number of CFA responses [23]. Since students
answer quizzes throughout the course, we are able to track
and predict their grades after each quiz answered. For a given
student i, we define ci(t) as the student’s response to quiz t;
ci(t) = 1 if the student was CFA, and 0 otherwise (i.e., if the
student answered incorrectly or did not answer at all). We let
(ti(1), ti(2), . . . , ti (ni)) denote the sequence of quiz indices
that student i answers; importantly, students need not answer
any questions and the order in which they are answered need
not be sequential (we may have ti(j) > ti(j + 1)). Each stu-
dent’s average CFA after answering j questions is then:

yi(j) =
∑j

s=1 ci(ti(s))
j

.

Fig. 4 shows the evolution of average CFA grades for several
students from the NFMB and NI courses who answered all ques-
tions in the course. Each student’s CFA score oscillates at the

1We define the playback time as the time it takes to play a video at the default
speed, e.g., a 3:30 video has a playback time of 210 seconds.

2We do not consider the number of fast forwards because it was found to not
be significantly correlated with CFA in [10].

Fig. 4. Examples of students’ average CFA grades throughout the courses.
(a) Four students take all of NFMB’s 92 quizzes. (b) Twenty-nine students take
all of NI’s 69 quizzes; for simplicity, we only plot the first 10 students.

beginning of the course but eventually stabilizes after around 10
or 20 responses; after a student has answered several questions,
a single quiz response will not significantly change his or her
average CFA grade. Thus, we would expect the average CFA
prediction to become easier as students answer more questions.

B. Algorithm Setup

Training: Our algorithm uses each student j’s video-watching
clickstream features and the previous average CFA grades as
inputs to predict each average CFA grade yi(j) for j up to ni ,
the number of questions that student i answers. We train the
algorithm separately on each individual student’s data; thus,
letting �yi =

[
yi(1) . . . yi(ni)

]
denote the vector of student i’s

average CFA grades throughout the course, we choose a subset
�ytrain

i of �yi on which to train the algorithm. The algorithm
training is validated on a separate subset �yvalid

i and then tested
on yet another subset of student i’s average CFA grades, �ytest

i ,
which does not intersect with �ytrain

i or �yvalid
i .

Evaluation: We use the Root Mean Square Error (RMSE) to
evaluate the performance of our algorithm, which is developed
in Section II-C, on each student’s data. We exclude the training
and validation data points, and instead calculate the RMSE for
each student i over that student’s testing data �ytest

i . Letting zi(n)
denote the predicted value of student i’s nth average CFA grade
yi(n),

RMSEi =

√
1

|�ytest
i |

∑

yi (n)∈�y t e s t
i

(yi(n) − zi(n))2

where |y| denotes the length of the vector y. We can then av-
erage different students’ RMSEs to evaluate the algorithms’
performance over a given set of students.

Naive Baseline: We compare our algorithm’s performance to
a naive baseline of simply averaging a given student’s previous
CFA grades:

zi(j) =
∑j − 1

s=1 ci(ti(s))
j − 1

.
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with zi(j), j > 1, again denoting student i’s estimated average
CFA grade after answering j quizzes. Note that as j increases,
i.e., the student answers more quiz questions, the naive base-
line will likely perform better; the jth CFA response will not
significantly change the student’s average CFA grade.

Linear Regression Baseline: We also compare our algorithm’s
performance with linear regression, in which we optimize the
coefficients of our linear predictor. To enhance the predic-
tion accuracy, we use the lasso method to perform variable
selection and regularization [26]. Comparing these results to
those of the IFTSNN and FTSNN algorithms thus provides
an idea of the additional accuracy achieved by including non-
linearity in the prediction algorithm at the expense of model
interpretability [27].

We note that both the naive and lasso regression base-
lines are linear predictors, while the algorithm we develop in
Section II-C is nonlinear. Thus, a comparison of the baseline
to our algorithm also serves to compare (non-optimized) linear
prediction algorithms, as used in [23], with a nonlinear predictor
for average CFA grades.

C. Our Prediction Algorithm

Using the data processing from Section II-A, we define a
features-CFA grade pair as follows:

1) xi (j): The vector of clickstream input features for student
i in video ti(j).

2) yi (j): Student i’s average CFA grade after video ti(j)
(i.e., answering j quizzes).

We use the input features xi and the previous average CFA
grade yi to predict each student i’s average CFA grades yi .

While many different algorithms can be used for this predic-
tion (including the naive baseline in Section II-B), we use a time
series neural network predictor due to their popularity in many
research fields [28], including student knowledge tracing [2].
Time series neural networks are recurrent neural networks, with
feedback connections enclosing several layers of the network.
Long Short Term Memory (LSTM) [29] and Gated Recurrent
Unit (GRU) [30] networks are two examples of recurrent neu-
ral networks. They are good at solving problems that require
learning long-term temporal dependencies. However, most of
the students in our dataset do not generate a long time series of
data, as they skip many quizzes in the course. We also find little
dependence between the behavior features of different quizzes.
Therefore, standard recurrent neural networks are sufficient for
our prediction. Moreover, neural networks are more robust to
data sparsity than other nonlinear predictors, e.g., collaborative
filtering methods rely on performance comparisons with similar
students, and performance data in MOOC is too sparse to accu-
rately assess student-to-student similarity [10]. While they may
not be the optimal type of predictor for MOOC performance,
our results demonstrate the feasibility of using time series neural
network predictors on MOOC data.

Dealing with sparsity: Before introducing our neural network
models, we first discuss our method for addressing data spar-
sity, as dealing with sparse data is one of the challenges of
doing predictions in MOOCs [4]. As discussed previously, most

Fig. 5. Graphical representation of IFTSNN.

students do not answer all of the quiz questions in a given
MOOC, leading to a sparse set of quiz responses for any indi-
vidual student. To handle this missing data, we simply “skip”
the missing quiz data and consider the previous d quizzes that
the student answered, instead of the previous d quizzes in the
course. This logic is reflected in our definition of yi(j) in
Section II-A.

To validate this approach, we randomly shuffle the time in-
stances of the CFA inputs to our IFTSNN and FTSNN prediction
algorithms and find that there is no obvious performance degra-
dation. Thus, the particular relationship between the topics cov-
ered by different quizzes has no bearing on the predictive power
of prior video watching behavior and quiz responses. Since our
goal is to predict the overall grade at any point in the course, this
grade depends not on the topic of the next question but also on
all the previous questions. Our approach is thus general enough
to study how behavior and prior performance will impact future
performance in a way that is independent of the particular topics
covered by each quiz.

Neural network model: We use two hidden layers in each
network that we train, which can be seen as a Deep Neural
Network (DNN); thus, we have both a hidden layer and an
output layer. The overall neural network model can be described
as follows:

zi(n) = fi

(
yi(n − 1), yi(n − 2), ..., yi(n − d),

xi(n − 1), xi(n − 2), . . . , xi(n − d)
)
,

where zi(n) is again the predicted average CFA grade for stu-
dent i after answering n quizzes, and d indicates the feedback
delay, or the number of previous quiz responses considered. d
in our model can also be understood as the minimum number
of questions a student must answer before predictions on future
average CFA will be made.3 We use fi to denote the model to
emphasize that we train the model separately for each student i;
thus, each student’s neural network will have different param-
eters. We discuss the importance of model personalization in
Section III-B. Fig. 5 summarizes the overall network structure
of this model.

We will additionally use another type of neural network to
evaluate the value of including the clickstream features xi in

3If a student has answered d0 < d questions at time n and predictions at this
time are desired, it is certainly possible for the neural network to use just these
d0 for model training, as long as d0 > 1.
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Fig. 6. Graphical representation of FTSNN.

Fig. 7. Average RMSE obtained (a) for different network configurations (N )
and (b) for different input lengths (d) on the NFMB dataset.

our predictions. We call this type of network a Feedback Time
Series Neural Network (FTSNN) model; compared to the previ-
ous model–which we call Input FTSNN (IFTSNN) since it has
the clickstream input xi–FTSNN does not use the clickstream
features. Thus, it relies only on feedback data, i.e., past average
CFA grades from student i:

zi(n) = gi (yi(n − 1), yi(n − 2), ..., yi(n − d)) .

Fig. 6 shows the overall structure of the FTSNN model.
We use Bayesian regularization with back-propagation to

train both types of model. Bayesian regularization minimizes a
linear combination of squared errors and weights. The training
algorithm first finds the parameters that minimize a weighed sum
of errors, and then adjusts the weights and trained parameters to
minimize a different weighted sum of errors, in order to make
sure that all errors are minimized. This Bayesian regularization
takes place within the Levenberg-Marquardt algorithm [31].

In addition to the neural network parameters, there are several
configuration parameters that we can tune for a time series neural
network:

1) The number of feedback delays d: How much feedback
and clickstream history should be used in the prediction.

2) The number of hidden layers H .
3) The number of neurons in each hidden layer N .
To select parameter values, we tested several configurations

of the network a priori. In the end, we chose d = 5,H = 2,
and N = [2 1] since these values tended to yield consistently
high quality results across both datasets; we will use these sets
of configuration parameters for every model that we train. For
completeness, Fig. 7 show the RMSEs achieved on the NFMB
dataset by (a) different configurations N of a two-layer network
and (b) different feedback delays d. We see that each setting of N
yields qualitatively similar results for both algorithms, and the
performance improvement in d becomes marginal after d = 5,

Fig. 8. Tabulated statistics–mean and standard deviation (S.D.)–for the click-
stream features corresponding to videos for different quiz responses. The top
row for each feature corresponds to CFA responses, and the bottom to non-CFA
responses. (a) NFMB. (b) NI.

constituting a reasonable tradeoff between model complexity
and quality enhancement.

We do expect, however, that a more extensive search for the
optimal choices of N and H (through e.g., cross validation)
will improve our prediction quality further. However, the re-
sults for our chosen parameters are sufficient to demonstrate the
feasibility of using neural networks to predict MOOC students’
performance. A simpler two-layer, three neuron network has
added advantages of efficient re-training in an online manner
(discussed in Section IV-E) and less overfitting in the presence
of sparse data.

III. DATASETS AND ANALYSIS

A. Feature Distributions and Performance

We perform some statistical analysis on the relationship be-
tween the input features and CFA scores for each dataset, in
order to provide some intuition for the prediction results in
Section IV. These insights can be useful to instructors in devis-
ing interventions to assist students as well. Many features have
large standard deviations, indicating that the data are not only
sparse but also noisy.

CFA vs. non-CFA: Fig. 8 shows the means and standard de-
viations (S.D.) of all eight clickstream input features for both
courses, considering the CFA and non-CFA responses sepa-
rately. Here, the clickstream features xi(j) for student i on
video ti(j) are tied to the binary CFA score ci (ti(j)) on
quiz ti(j). There are 19,432 CFA and 9,861 non-CFA re-
sponses in NFMB, while there are 34,886 CFAs and 11,762
non-CFAs in NI. We make some general observations for each
feature:

Fraction completed (F-Co): CFA responses in both courses
have higher means than non-CFA responses. In other words,
students who completed more of a video are more likely to be
successful on the corresponding quiz.

Fraction spent (F-Sp): The mean for CFA responses is
18.041, compared to 17.855 for non-CFA responses, in NI.
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Fig. 9. Two dimensional probability density distributions of NFMB students’ clickstream features and final CFA grades. (a) F–Co. (b) N–Pa. (c) A–PR

Fig. 10. Probability density distributions of the features in Fig. 9 for NI. (a) F–Co. (b) N–Pa. (c) A–PR.

Students who spend more time with the video may be more
likely to answer questions correctly, as we would intuitively ex-
pect. However, we note that the standard deviations for F-Sp
are quite large for both courses and CFA/non-CFA responses,
indicating that the difference in means may not be significant.
In fact, for the responses in NFMB, the mean for CFA responses
is 21.912 compared to 28.360 for non-CFA, indicating a more
complex relationship than one would expect from the NFMB
results.

Fraction played (F-Pl): Like F-Sp, the two courses show
different results. The CFA responses have a higher mean for the
NFMB course, but lower mean for the NI course. CFA students
may tend to watch more of the video, increasing the amount
played (including repetitions), but they may also repeat fewer
parts of the video, leading to a lower F-Sp.

Fraction paused (F-Pa): There is only a slight difference
in the means for CFA and non-CFA responses for either course,
but the CFA responses have slightly larger means. However, the
standard deviations are also large, indicating that these differ-
ences are likely not significant, as for F-Sp.

Number of pauses (N-Pa): The mean for the CFA responses
in NFMB is higher than that for non-CFA responses; however,
the opposite is true for the NI responses. Students who pause
the video frequently may reflect more on the material covered,
making them more likely to be CFA, or they may be more
confused by the video, making them less likely to be CFA. The
difference in significance between N-Pa and F-Pa indicates
that it is more useful to consider pausing independent of video
playback length.

Average playback rate (A-PR): The means for the CFA
responses in both courses are higher than the non-CFA means,
but the differences are extremely small.

Standard deviation of playback rate (S-PR): In NI, the CFA
and non-CFA responses have the same means, but the mean for
NFMB CFA responses is higher than the mean for non-CFA
responses. The small overall means in both cases indicate that
students tend to keep the default playback speeds.

Number of rewinds (N-R): Like F-Pl, the mean for CFA
responses is higher than the mean for non-CFA responses in
FMB, but the mean for CFA responses is slightly lower than the
mean for non-CFA responses in NI.

In general, we observe that the two different courses exhibit
somewhat different means for CFA and non-CFA responses.
This observation may indicate that the difficulty of the course
affects students’ learning behaviors.

Average CFA grade: Figs. 9 and 10 plot students’ average CFA
grades against selected features to see whether clear correlations
exist. Each student i appears as one datapoint in each plot, as
his/her average feature value and average CFA grade yi(ni) over
all ni quizzes the student took.4

Intuitively, one would expect each of these features to be
strongly correlated with quiz performance, e.g., as students
complete larger portions of the videos (higher F-Co), we
would expect them to have higher average quiz grades. As the

4The selection of F-Co, N-Pa, and A-PR to show in the paper is arbitrary;
all clickstream features show a similarly nonlinear relationship with the average
CFA grades.
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Fig. 11. Using IFTSNN models trained on NI students who answered N
quizzes to predict average CFA grades for NI students who answered a different
number of quizzes. The dotted line is the naive baseline. The x-axis shows the
number of quizzes answered by the students whose scores we predict, and the
y-axis is the avg. RMSE. (a) N = 10. (b) N = 69.

Fig. 12. The naive baseline nearly always performs worse than predicting
students’ average CFA score with an IFTSNN trained on another student’s data.
The y-axis shows the percentage of students for whom the naive baseline yields
a larger RMSE. (a) NI. (b) NFMB.

figures show, however, the correlations between CFA grades and
clickstream features are relatively weak. Our prediction results
in Section IV will demonstrate that there is indeed a relation-
ship when all features are considered together, but it is highly
non-linear. Neural networks can discover such relationships, as
they automatically learn their own internal representations of
the different input features, and can decide dynamically which
features to count and how effective they are at predicting the
output [32].

B. Model Personalization

In order to motivate training individual models for each stu-
dent, we consider the effect of using algorithms trained on
one NI student to predict another NI student’s average CFA
scores. In particular, we test two IFTSNN models trained
on students who answered 10 quizzes [Fig. 11(a)] and 69
quizzes [Fig. 11(b)] on data from other students, and com-
pare the result with the naive baseline. The baseline algo-
rithm performs better in most cases, particularly as the num-
ber of quizzes answered increases. As students answer more
quizzes, we would expect the baseline algorithm to per-
form better (cf. Section II), which is consistent with these
results.

Fig. 12 shows the percentage of students for whom the
baseline algorithm’s average RMSE is larger than the RMSE
achieved by our IFTSNN algorithm trained on another student’s
data, grouped by the number of quiz questions that the student

answered. The baseline algorithm rarely performs worse for ei-
ther course. Thus, in order to measurably improve on the naive
baseline, it is necessary to train our algorithms on individual
students’ data.

Note also that the results for the naive baseline in Fig. 11 are
on the same order of magnitude as those for our individually
trained algorithms. This indicates that our algorithms do not
overfit to each individual student. Instead, they tend to reflect
individual students’ characteristics, which will allow them to
outperform the baseline substantially in Section IV.

C. Dataset Groupings

We divide our datasets into different partitions for evaluation
in Section IV. Let Ωs0 ,e0

A ∈ Ω denote the set of students in the
dataset ΩA who answered at least u0 and at most e0 questions,
and let Ωs0

A ≡ Ωs0 ,s0 be those who answer exactly s0 questions.
We take the subscript A = F for NFMB students and A = I
for NI students; thus, ΩF denotes all data from NFMB students,
and ΩI all data from NI students. We then spilt the students of
both courses into four groupings:

1) Grouping A: NFMB students who answer exactly 10, 11,
..., 92 quizzes, i.e., ΩA = {Ωs0

F |s0 = 10, 11, ..., 92}.
2) Grouping B: NFMB students who answer between 10 ∼

10, 10 ∼ 11, 10 ∼ 12, ..., 10 ∼ 92 quizzes, i.e., ΩB =
{Ωs0 ,e0

F |s0 = 10; e0 = 10, 11, ..., 92}.
3) Grouping C: NI students who answer exactly 10, 11, ...,

69 quizzes, i.e., ΩC = {Ωs0
I |s0 = 10, 11, ..., 69}.

4) Grouping D: NI students who answer between 10 ∼ 10,
10 ∼ 11, ..., 10 ∼ 69 quizzes, i.e., ΩD = {Ωs0 ,e0

I |s0 =
10; e0 = 10, 11, ..., 69}.

For example, in grouping A, Ω11
F is the subset of students in

FMB who answer exactly 11 questions. In grouping B, Ω10,12
F

is those who answer between 10 and 12 questions.
Fig. 13 shows the distribution of the number of students in

each subset of groupings A, B, C and D; groupings B and D
are cumulative versions of A and C. We see that most stu-
dents answer fewer than 20 quiz questions, leading to a sparse
dataset.

IV. GRADE PREDICTION EVALUATION

In this section, we evaluate the performance of the model pre-
sented in Section II on our course data. In Section V, we propose
some student interventions that use our prediction methods to
help vulnerable or struggling students.

A. Algorithm Implementation

As described in Section II-B, we train our neural network
prediction models separately on each individual student’s data.
For each student in both courses, we train two different models:
one FTSNN (i.e., a neural network with only feedback data), and
one IFTSNN. To ensure that we have enough data to train and
test a reliable model, we only consider students who answered
at least 10 quizzes. For each student, we randomly select 70% of
their quiz responses as training data; 10% is used as validation
data, and 20% of the data is used as testing data. Throughout
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Fig. 13. Numbers of students in each subset of the groupings A, B, C and D. (a) Grouping A, (b) Grouping B, (c) Grouping C, (d) Grouping D.

Fig. 14. Sample result of predictions for one student in each course. The solid
line denotes the actual average CFA grade while the dashed line is the predicted
average grade. (a) NFMB, (b) NI.

Fig. 15. Overall average RMSEs for the different algorithms, with the per-
cent improvement relative to the naive baseline indicated. (a) NFMB students,
(b) NI students.

this section, we use RMSE on the testing data to evaluate each
prediction algorithm’s accuracy. Unless stated otherwise, figures
show the average RMSE, taken over the specified set of students.

B. Overall Quality

Fig. 14 shows a sample result of our IFTSNN predictions for
two students, one in each class. We can observe that the predicted
CFA grades track students’ realized average CFA grades well
throughout the course. While we would expect the average CFA
grades to level off as the student answers more questions–each
individual CFA grade affects the average less as we collect
more student responses–the average CFA grades for the students
in Fig. 14 show some oscillation as the number of questions
increases. Our prediction algorithms track these oscillations,
particularly those for the NFMB student, as the NFMB course
included more quizzes than the NI course.

Fig. 15 shows the overall performance of our algorithms (i.e.,
the percentage improvement in RMSE), averaged over all stu-
dents. We see that both the IFTSNN and FTSNN predictions
significantly outperform both the naive baseline and the linear
regression baseline for both courses, and that including input
data (i.e., IFTSNN vs. FTSNN) further improves the prediction.
Also, the lasso regression algorithm performs better than the
naive baseline in each case, as expected. We note that, since our
clickstream features included a vector of eight inputs at each
timeslot, including clickstream data in the prediction algorithm
greatly increases the size of the input data and thus the po-
tential for model overfitting; however, the modest performance
gains indicate that our training algorithm avoided overfitting for
IFTSNN compared to FTSNN.

We next investigate how the two algorithms’ performance on
different students depends on the number of quizzes the students
answered, allowing us to evaluate the early detection capability
and compare the two courses in more detail. We then consider
the impact of individual clickstream features.

C. Quality by Number of Questions Answered

Figs. 16 and 17 show the average RMSE improvement when
grouping students as in groupings A and C, i.e., by number of
questions answered. Analyzing Fig. 16(a) and (b), we observe
that as the number of quizzes increases, the RMSE improvement
compared to the naive baseline decreases, yielding the 61.1%
and 49.9% overall RMSE improvements respectively for NFMB
(Fig. 15). The IFTSNN’s and FTSNN’s improvement in RMSE
gets better with a smaller number of quizzes answered, before
the average CFA begins to stabilize. This early detection capa-
bility, to work with data as it becomes available at the beginning
of the course, is one of the advantages of our system. However,
this decrease in improvement does not imply that the IFTSNN
and FTSNN algorithms perform worse for students who answer
many quiz questions–it simply reflects the fact that the naive
baseline performs better. When students have answered only a
few quizzes, we expect the naive baseline to perform poorly:
at this point, each quiz answer will dramatically change the
student’s average CFA grade. Thus, the IFTSNN and FTSNN
algorithms realize a smaller improvement for students who an-
swer many quizzes: though the baseline algorithms may realize
high errors early in the course, they will likely exhibit smaller
errors in predicting these students’ performance later after they
have answered many quiz questions.
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Fig. 16. Performance of grouping A (NFMB students, grouped by the exact number of questions answered). The (a) IFTSNN and (b) FTSNN algorithms improve
the average RMSE more compared to the naive baseline for students who answered few questions, while (c) the IFTSNN algorithm improved the average RMSE
more compared to the FTSNN algorithm for students who answered more questions. Break points in the lines at N = 56, 63, 67, 71 and 76 mean that no data
were available for that number of questions, i.e., that no student answered exactly that number of questions.

Fig. 17. Performance of grouping C (NI students, grouped by the exact number of questions answered). As for the NFMB students in Figs. 16, the (a) IFTSNN
and (b) FTSNN algorithms improve the average RMSE more compared to the naive baseline for students who answered few questions, while (c) the IFTSNN
algorithm improved the average RMSE more compared to the FTSNN algorithm for students who answered more questions.

On students who answered fewer than 10 quizzes, the IFT-
SNN and FTSNN algorithms achieve an average RMSE of
0.0505, indicating that these algorithms perform well on stu-
dents with extremely small numbers of questions. However,
given that we need to 5 initial states to train the model, the
testing and training data for these students is very small, lead-
ing to a large risk of overfitting. Incorporating data from other
students reduces this risk but significantly reduces the model’s
performance (cf. Fig. 12): we find that if we train the model
with 92 quizzes and apply it to students with answering from
10 to 15 quizzes, the average RMSE is much higher, at 0.1866.
Students in the NI course exhibit similar results, as shown in
Fig. 17(a) and (b).

Comparing the quality of IFTSNN and FTSNN allows us to
assess the value of including clickstream data in our prediction
algorithms. We find that the clickstream-based input features
of IFTSNNs help predict the CFA grade, with an average im-
provement of 11.5% and 10.1% respectively on groupings A
and C (Fig. 15). We might expect that as students answer more
quiz questions, the quality of the feedback-only model will im-
prove [10], as the algorithm can be trained on more student
data. However, in practice, the IFTSNN model also improves
as students answer more questions; Figs. 16(c) and 17(c) show
that as the student answers more questions, the IFTSNN model

generally realizes a greater improvement. Algorithms trained
on these groupings can take advantage of more quiz responses,
preventing them from overfitting to a small sample of student
clickstream data and accompanying quiz scores.

Finally, we can compare the results of groupings A and C
to observe the difference in quality between the predictions in
NFMB and NI. The NI students tend to exhibit more consistent
improvement than the NFMB students over the naive baseline as
the number of quizzes answered increases (Fig. 16 vs. Fig. 17).
This is likely due to the larger number of NI students: the per-
centage improvement for NFMB even dips below zero for some
numbers of quizzes answered, due to a small number of stu-
dents who answered that number of questions. The IFTSNN
models for the NI students also demonstrate more consistent
improvements over the FTSNN models, compared to NFMB.
This result could reflect the fact that the NI course covered ma-
terial at a more introductory level than the NFMB course, so
the NI students were likely less familiar with the background
material and may have exhibited less consistent performance,
leading the naive baseline algorithm to perform worse and yield-
ing better improvement in quality for our IFTSNN and FTSNN
algorithms. These students may also have relied more on the
videos to learn the material presented, due to their inexperience;
thus, the clickstream input features could yield more insights
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Fig. 18. RMSE averaged over all NFMB students with (a) individual features removed, and (b) a single feature included, compared to the IFTSNN algorithm
(far right); RMSE averaged over all NI students with (c) individual features removed, and (d) a single feature included, compared to the IFTSNN algorithm (far
right). No single feature dominates the algorithms’ RMSE. Feature names indicate the clickstream input feature (a) and (c) removed or (b) and (d) included, with
abbreviations defined in Section II-A.

into student performance than for the NFMB course, resulting
in more consistent improvement in the IFTSNN compared to
the FTSNN algorithms.

D. Feature Importance

While Figs. 16(c) and 17(c) show that including the click-
stream input data does improve prediction quality as students
answer more quizzes, they do not show the effect of any
individual feature. To measure this, we retrain our algorithms
with individual features excluded and compare the retrained
algorithms’ performance to the IFTSNN algorithm (i.e., with
all features included). Other feature selection methods can yield
similar insights [33], but excluding particular features directly
shows the impact of each feature on the network performance.
Fig. 18(a) and (c) show the average RMSE when each
clickstream input feature is removed; there are no significant
changes, particularly for the NI students. The largest decline
across the two courses occurred when removing the N-R
(number of rewinds) feature for the NFMB students, yielding
a near 4.5% decline. While this decline is relatively small, it
indicates that N-R plays an important role in predicting the CFA
grade: this feature indicates how frequently students re-watch
content, so it may reflect how well they understand the material,
and thus their CFA grade. From Fig. 8, N-R is not clearly higher
for CFA or non-CFA students, indicating a significant but
nonlinear relationship between this feature and average CFA
grades.

Fig. 18(b) and (d) show the average RMSE over all students
in each course with a single clickstream input feature (combined
with feedback). We see that the RMSE in both courses visibly
increases with only one feature compared to the IFTSNN algo-
rithm with all clickstream features, indicating that each feature
does contain information useful for predicting the average CFA
grades. Again, no single feature overly contributes to the im-
proved performance, but a combination yields measurably lower
RMSE.

E. Online Prediction

In practice, our prediction algorithms will be run in an on-
line manner, with retraining as new student data is recorded.
Specifically, each time a student takes another quiz, the

Fig. 19. RMSE of online prediction obtained for NFMB students. The
right column indicates the performance improvement compared to the lasso
regression.

student behavior features for that quiz and its associated video
are computed, and the neural network parameters are updated
accordingly. We can then use the updated neural network to
predict future average CFA grades for that student.

Again, this “early detection” capability, to work with data as
it is available, is one of the advantages of our system. Fig. 19
shows the results of our online prediction for NFMB students.
Here, students are divided into groups according to the number
of quizzes they answered, i.e., Ωs0

A according to the notation in
Section III-C: Dataset Groupings. For each student, predictions
are made on his/her average CFA score after the jth quiz
response training on 1, ..., j − 1 for each j = 6, 7, ..., s0 ; the
model is re-trained for each j, and the RMSE is computed
for each student and averaged across the group. We see that
the achieved RMSEs are consistently low, though they are
somewhat smaller for students who answer more quizzes. We
would intuitively expect this result, since the average CFA
grade stabilizes after students answer several quizzes. Thus, our
neural network models can be used for online as well as offline
prediction.

V. CONCLUSION, DISCUSSION, AND FUTURE WORK

In this paper, we used time series neural networks for per-
sonalized prediction of students’ average CFA grade in two
MOOCs. We considered neural network prediction models that
use as inputs only past quiz performance or a combination of
past quiz performance and clickstream input data. We showed
that video-watching clickstream events can be used as learn-
ing features to improve our prediction accuracy. In implement-
ing these prediction algorithms, we employed sophisticated
pre-processing to handle the sparsity of available data on stu-
dent quiz performance. We trained personalized algorithms for
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individual students in order to capture unique characteristics
of each student’s learning patterns. We found that both neural
network-based algorithms consistently outperform a naive base-
line of simply averaging historical CFA data for each student.
We also found that each clickstream input feature is equally
important to the algorithms’ accuracy, with no single feature
contributing the most.

Discussion: From Figs. 16 and 17, we see that our IFTSNN
and FTSNN algorithms are especially useful for predicting the
performance of students who answer relatively few quizzes, for
whom the naive baseline algorithm does worse. Thus, our al-
gorithms can be used to detect students with low average CFA
grades early in the course, allowing instructors to automati-
cally target these potentially struggling students with course
interventions. Note that the FTSNN algorithms tend to per-
form slightly better than the IFTSNN algorithms when there are
few student quiz answers available, indicating that feedback-
only algorithms may be sufficient for designing early-course
interventions.

Identifying struggling students early in a course allows in-
structors to stage a variety of possible interventions to improve
these students’ performance. Even simply alerting the instruc-
tor to students who are predicted to have low average CFA
grades can prompt them to give these students more individual
attention. In another possible intervention, when our algorithms
forecast that a student’s average CFA grade will fall below an
instructor-specified threshold, the course software could auto-
matically present students with additional, possibly personal-
ized study material for the next course topic [34] before the next
video lecture. Instructors could prepare this additional study ma-
terial in advance based on the topics covered in the course, and
perhaps historical information on which topics students gen-
erally struggled with. Thus, an important step for future work
would be to implement an algorithm in a technology platform
that flags students with low predicted average CFAs and presents
them with intervention course material.

Future work: Due to the low correlation of the input features
and CFA grade and the sparsity of the available time series data,
we choose neural networks for our prediction algorithms. How-
ever, other time series prediction methods may also be effective
compared to the naive baseline; our paper demonstrates the fea-
sibility of using historical quiz performance and clickstream
data to predict performance, rather than definitively establish-
ing the “best” type of algorithm to perform these predictions. A
promising direction of future work would be to comprehensively
compare our results to the accuracy of other types of algorithms,
e.g., nearest-neighbor and other neural network approaches, in-
cluding other network configurations.

In this work, we were primarily concerned with relating users’
video watching behavior to their quiz performance, independent
of the specific course topics each quiz covers. Future work could
augment our neural network method to be topic specific. One
possibility would be to use behavioral data to train these recur-
rent neural networks based on the topics of the particular videos
a student has watched. This could be done e.g., by applying topic
extraction to the textual component (audio track) of the video

and weighing the inputs to the network based on the similarity
of these videos to upcoming quiz questions.

Our model can easily be extended to real-world (offline)
classroom scenarios. Instead of using clickstream data inputs,
we could use in-course data such as the number of times that
students ask instructors questions, how much time they spend
studying, etc. to predict students’ average grades throughout the
course. While many traditional courses do not include a single
quiz question after each module, we could instead predict stu-
dents’ average test scores or homework grades based on these
input features. Even in a MOOC context, we could use social
learning networks (SLNs) [6], [8] to enhance prediction perfor-
mance by incorporating features like the number of questions
that students post in online course forums. Another direction of
future work would be to investigate whether the students who are
predicted to have low course grades perform better after different
types of instructor interventions, which may indicate not only
the efficacy of different intervention methods but also our algo-
rithms’ effectiveness at identifying truly struggling students.
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